

2.9inch E-Paper

Product Specifications

Customer	Standard
Description	2.9 E-paper Display
Model Name	2.9inch E-Paper
Date	2023/03/15
Revision	1.0

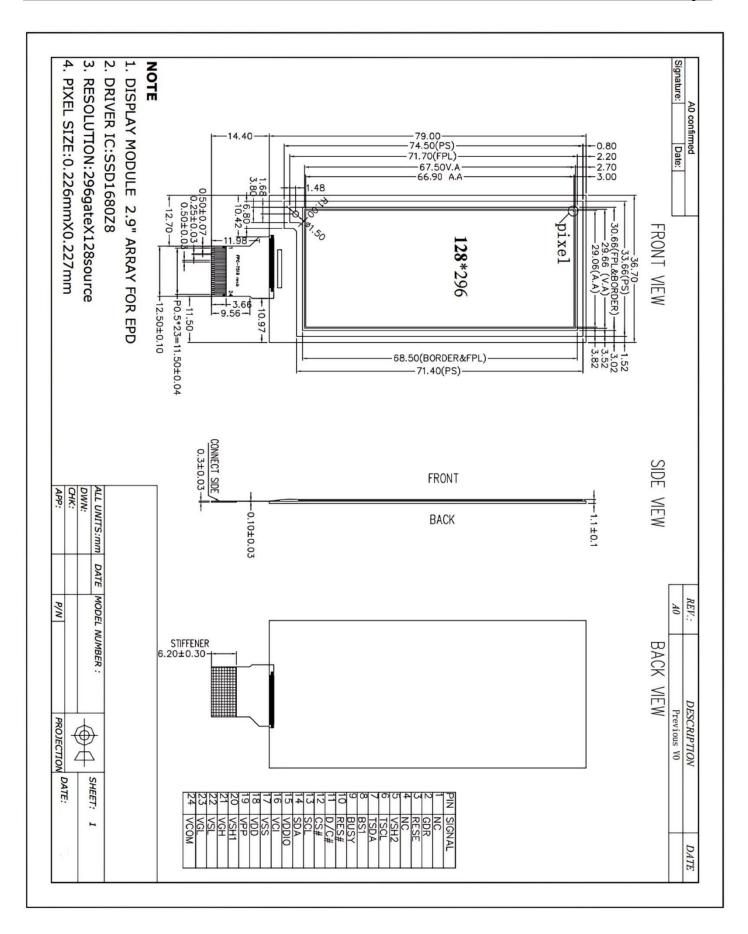
Table of contents

1. General Description	1
1.1 Over View	1
1.2 Features	1
1.3 Mechanical Specifications	1
1.4 Mechanical Drawing of EPD module	2
1.5 Reference Circuit	3
1.6 Input/Output Pin Assignment	4
2. COMMAND TABLE	5
3. Environmental	18
3.1 HANDLING, SAFETYAND ENVIROMENTAL REQUIREMENTS	18
3.2 Reliability test	19
4. Electrical Characteristics	20
4.1 ABSOLUTE MAXIMUM RATING	20
4.2 DC CHARACTERISTICS	20
4.3 Serial Peripheral Interface Timing	21
4.4 MCU Interface	22
4.4-1 MCU interface selection	22
4.4-2 MCU Serial Peripheral Interface (4-wire SPI)	23
4.4-3 MCU Serial Peripheral Interface (3-wire SPI)	24
4.4 Block Diagram	25
5. Typical Operating Sequence	26
5.1 General operation flow to drive display panel	26
6. Optical characteristics	27
6.1 Specifications	27
7. Point and line standard	27
7.1 Electric inspection standard	28
7.2 Appearance inspection standard	29
8. Precautions	29

1. General Description

1.1 Over View

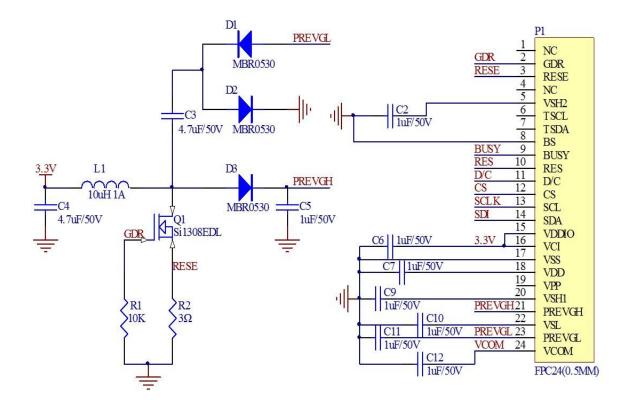
2.9inch e-Paper is an Active Matrix Electrophoretic Display (AMEPD), with interface and a reference system design. The 2.9" active area contains 296×128 pixels, and has 1-bit Black/White full display capabilities. An integrated circuit contains gate buffer, source buffer, interface, timing control logic, oscillator, DC-DC, SRAM, LUT, VCOM and border are supplied with each panel.


1.2 Features

- ■296 × 128 pixels display
- ■High contrast
- ■High reflectance
- Ultra wide viewing angle
- ■Ultra low power consumption
- ■Pure reflective mode
- ■Bi-stable display
- ■Commercial temperature range
- Landscape, portrait modes
- Hard-coat antiglare display surface
- ■Ultra Low current deep sleep mode
- ■On chip display RAM
- ■Waveform can stored in On-chip OTP or written by MCU
- Serial peripheral interface available
- On-chip oscillator
- On-chip booster and regulator control for generating VCOM, Gate and Source driving voltage
- ■12C signal master interface to read external temperature sensor/built-in temperature sensor

1.3 Mechanical Specifications

Parameter	Specifications	Unit	Remark
Screen Size	2.9	Inch	
Display Resolution	296 (V) × 128 (H)	Pixel	Dpi:112
Active Area	66.896 (V) × 29.056 (H)	mm	
Pixel Pitch	0.227 × 0.226	mm	
Pixel Configuration	Rectangle		
Outline Dimension	79 (V) × 36.7 (H) × 1.23(D)	mm	
Weight	5.5 ± 0.5	g	



1.4 Mechanical Drawing of EPD module

1.5 Reference Circuit

Note:

- 1. Inductor L1 is wire-wound inductor. There are no special requirements for other parameters.
- 2. Suggests using Si1304BDL or Si1308EDL TUBE MOS (Q1), otherwise it may affect the normal boost of the circuit.
- 3. The default circuit is 4-wire SPI.
- 4. Default voltage value of all capacitors is 50 V.

1.6 Input/Output Pin Assignment

Pin #	Single	Description	Remark
1	NC	No connection and do not connect with other NC pins	Keep Open
2	GDR	N-Channel MOSFET Gate Drive Control	
3	RESE	Current Sense Input for the Control Loop	
4	NC	No connection and do not connect with other NC pins e	Keep Open
5	VSH2	This pin is Positive Source driving voltage	
6	TSCL	I ² C Interface to digital temperature sensor Clock pin	
7	TSDA	I ² C Interface to digital temperature sensor Date pin	
8	BS1	Bus selection pin	Note 1.5-5
9	BUSY	Busy state output pin	Note 1.5-4
10	RES#	Reset	Note 1.5-3
11	D/C #	Data /Command control pin	Note 1.5-2
12	CS#	Chip Select input pin	Note 1.5-1
13	SCL	serial clock pin (SPI)	
14	SDA	serial data pin (SPI)	
15	VDDIO	Power for interface logic pins	
16	VCI	Power Supply pin for the chip	
17	VSS	Ground	
18	VDD	Core logic power pin	
19	VPP	Power Supply for OTP Programming	
20	VSH1	This pin is Positive Source driving voltage	
21	VGH	This pin is Positive Gate driving voltage	
22	VSL	This pin is Negative Source driving voltage	
23	VGL	This pin is Negative Gate driving voltage	
24	VCOM	These pins are VCOM driving voltage	

Note 1.5-1: This pin (CS#) is the chip select input connecting to the MCU. The chip is enabled for MCU communication: only when CS# is pulled LOW.

Note 1.5-2: This pin (D/C#) is Data/Command control pin connecting to the MCU. When the pin is pulled HIGH, the data will be interpreted as data. When the pin is pulled LOW, the data will be interpreted as command.

Note 1.5-3: This pin (RES#) is reset signal input. The Reset is active low.

Note 1.5-4: This pin (BUSY) is Busy state output pin. When Busy is High the operation of chip should not be interrupted and any commands should not be issued to the module. The driver IC will put Busy pin High when the driver IC is working such as:

- Outputting display waveform; or
- Communicating with digital temperature sensor

Note 1.5-5: This pin (BS1) is for 3-line SPI or 4-line SPI selection. When it is "Low", 4-line SPI is selected. When it is "High", 3-line SPI (9 bits SPI) is selected.

2. COMMAND TABLE

Command Table

	mand		le					-		_					
R/W#	D/C#	Hex	D 7	D6	D5	D4	D3	D2	D1	D0	Command	Description	n		
0	0	01	0 A ₇	0 A6	0 A5	0 A4	0 A ₃	0 A ₂	0 A1	1 Ao	Driver Output control		27h [POR]	, 296 MUX ng as (A[8	
0	1		0	0	0	0	0	0	0	A ₈		WION Gaic	inies setti	ng as (A[o	.0] 17.
0	1		0	0	0	0	0	B ₂	Bı	Во		B[2:0] = 0 Gate scann		nce and dir	ection
												output seq GD=1, G1 is the output sequ B[1]: SM Change sc SM=0 [PC	PR], 1 1st gate quence is 1 st gate outline is G1 anning ord PR], 2, G329	output ch	G2, driver.
0		02			0			0				G0, G2, G- B[0]: TB TB = 0 [P- TB = 1, sc	OR], scan a	, G1, G3, from G0 to 295 to G0.	G295
0	0	03	0	0	0	0 A4	0 A ₃	0 A ₂	1 4A1	1 Ao	Gate Driving voltage Control	Set Gate d A[4:0] = 0 VGH settir	Oh [POR]		
												A[4:0]	VGH	A[4:0]	VGH
												00h	20	0Dh	15
												03h	10	0Eh	15.5
												04h	10.5	0Fh	16
												05h	11	10h	16.5
												06h	11.5	11h	17
												07h	12	12h	17.5
												08h	12.5	13h	18
												07h	12	14h	18.5
												08h	12.5	15h	19
												09h	13	16h	19.5
												0Ah	13.5	17h	20
												0Bh	14	Other	NA
												0Ch	14.5		

	mand		le													
/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Comm	and		Description		
0	0	04	0	0	0	0	0	1	0	0	Source	Driving v	oltage	Set Source driving voltage		
0	1		A7	A ₆	A ₅	A ₄	Аз	A ₂	Aı	Ao	Contro			A[7:0] = 41h [POR], VSH1 at 15V		
0	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	Bı	Bo				B[7:0] = A8h [POR], VSH2 at 5V.		
_											-			C[7:0] = 32h [POR], VSL at -15V		
0	1		C ₇	C ₆	C ₅	C4	C ₃	C ₂	Cı	Co				Remark: VSH1>=VSH2		
]/B[7]					_			7]/B[7					C[7] = 0,		
	H1/VS	H2 v	oltage	settii	ng fro	m 2.4	V to			SH2	voltage	setting fro	om 9V	VSL setting from -5V to -17V		
3.8		T	0.00110		rm 03				17V	1,,,,		1 (DER 63	T. 10111 0 1011			
	/B[7:0] 8Eh	_	/VSH2 2.4	_	[7:0] Fh	VSH1/		<u> </u> -	A/B[7:0] 23h	VS	H1/VSH2 9	A/B[7:0] 3Ch	VSH1/VSH2			
	8Fh	_	2.5	_	30h	5.			24h	+	9.2	3Dh	14.2	0Ah 0Ch -5.5		
	90h	- 1	2.6	В	31h	5.	9		25h		9.4	3Eh	14.4	0Eh -6		
	91h	-	2.7	_	32h	_	5		26h	\perp	9.6	3Fh	14.6	10h -6.5		
	92h 93h	-	2.8	_	33h 34h	6.			27h 28h		9.8	40h 41h	14.8	12h -7		
	93h 94h	+	3	_	15h	6.	-		28h 29h	+	10.2	41h 42h	15.2	14h -7.5		
	95h	+	3.1	_	36h	6.			2Ah		10.4	43h	15.4	16h -8		
	96h	+	3.2	_	37h	6.			2Bh		10.6	44h	15.6	18h -8.5		
	97h	_	3.3	_	18h	6.			2Ch		10.8	45h	15.8	1Ah -9		
	98h 99h	-	3.4	_	39h 3Ah	6.			2Dh 2Eh	+	11.2	46h 47h	16 16.2	1Ch -9.5		
	9Ah	-	3.6	_	Bh	6.			2Fh	+	11.4	47h 48h	16.4	1Eh -10		
	9Bh		3.7		Ch				30h		11.6	49h	16.6	20h -10.5		
	9Ch	_	3.8	_	Dh	7.			31h		11.8	4Ah	16.8	22h -11		
	9Dh	+	3.9	_	Eh	_	2		32h	_	12	4Bh	17	24h -11.5 26h -12		
	9Eh 9Fh	+	4.1	-	3Fh 20h	7.			33h 34h	-	12.2	Other	NA	26h -12 28h -12.5		
	A0h	+	4.2	-	Clh	7.	-		35h	+	12.4			28h -12.5 2Ah -13		
	Alh	-	4.3	_	2h	7.	-		36h		12.8			2Ch -13.5		
	A2h	_	1.4	_	3h	7.			37h		13			2Eh -14		
	A3h A4h	_	4.5 4.6	_	24h 25h	7.			38h	+	13.2			30h -14.5		
	A4h A5h	-	4.6	_	26h	1.			39h 3Ah	+	13.4			32h -15		
	A6h	-	4.8	_	7h	8.			3Bh		13.8			34h -15.5		
	A7h	+	4.9	_	28h	8.	200			_				36h -16		
	A8h	_	5	_	9h	8.								38h -16.5		
	A9h AAh	+	5.1	_	'Ah 'Bh	8.								3Ah -17		
	ABh	_	5.3	_	Ch	_	.6							Other NA		
	ACh	+	5.4	_	'Dh	_	.7									
	ADh	+	5.5	_	Eh	8.	200									
	AEh	1 :	5.6	O	ther	l N	A									
0	0	08	0	0	0	0	1	0	0	0		Code Setti	ing	Program Initial Code Setting		
											OIP P	rogram		The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.		
0	0	09	0	0	0	0	1	0	0	1		Register fo	r Initial	Write Register for Initial Code Setting Selection		
0	1		A ₇	A ₆	A ₅	A ₄	Аз	A ₂	Αı	Ao	Code S	setting		1997 OCTO 755 935 00 TO 000 TO		
0	1		B ₇	B6	B ₅	B ₄	Вз	B2	Bı	Bo				A[7:0] ~ D[7:0]: Reserved Details refer to Application Notes of Initia		
0	1		C ₇	C ₆	C5	C ₄	Сз	C ₂	Cı	Co	1			Code Setting		
-								2000			-			Code Setting		
0	1		D ₇	D ₆	D ₅	D ₄	D3	D ₂	Dı	D ₀						
0	0	0A	0	0	0	0	1	0				Register for Setting	r Initial	Read Register for Initial Code Setting		

Com	mand	Tabl	le									
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	0C	0	0	0	0	1	1	0	0	Booster Soft start Control	Booster Enable with Phase 1, Phase 2 and Phase 3 for soft start current and duration setting.
0	1		1	A ₆	A ₅	A ₄	A ₃	A ₂	Aı	A ₀	Control	A[7:0] -> Soft start setting for Phase1 =
0	1		1	B ₆	B ₅	B ₄	Вз	B2	Bı	Bo		8Bh [POR]
0	1		1	C ₆	C ₅	C ₄	Сз	C ₂	Cı	C ₀		B[7:0] -> Soft start setting for Phase2 = 9Ch [POR]
0	1		0	0	Ds	D4	D ₃	D ₂	Dı	D ₀		C[7:0] -> Soft start setting for Phase3 = 96h [POR] D[7:0] -> Duration setting = 0Fh [POR] Bit Description of each byte: A[6:0] / B[6:0] / C[6:0]:
												Bit[6:4] Driving Strength Selection
												000 1(Weakest)
												001 2
												010 3
												011 4
												100 5
												101 6
												110 7
												111 8(Strongest)
												Bit[3:0] Min Off Time Setting of GDR [Time unit]
												0011 NA
												0100 2.6
												0101 3.2
												0110 3.9
												0111 4.6
												1000 5.4
												1001 6.3
												1010 7.3
												1011 8.4
												1100 9.8
												1101 11.5
												1110 13.8
												1111 16.5
												D[5:0]: duration setting of phase D[5:4]: duration setting of phase 3 D[3:2]: duration setting of phase 2 D[1:0]: duration setting of phase 1
												Bit[1:0] Duration of Phase [Approximation]
												00 10ms
												01 20ms
												10 30ms
												11 40ms

Com	mand	Tab	le										
	D/C#		D7	D6	D5	D4	D3	D2	D1	D0	Command	Descriptio	n
0	0	10	0	0	0	1	0	0	0	0	Deep Sleep mode		o mode Control:
0	1		0	0	0	0	0	0	Aı	Ao	Deep steep mode	A[1:0]:	Description
"			U	U		0	0	"	Ai	Au		I 00	Normal Mode [POR]
												01	Enter Deep Sleep Mode 1
												11	Enter Deep Sleep Mode 2
												enter Deep keep outpu Remark: To Exit De	command initiated, the chip will be Sleep Mode, BUSY pad will at high. The sleep mode, User required to the driver
0	0	11	0	0	0	1	0	0	0	1	Data Entry mode setting	Define dat	a entry sequence
0	1		0	0	0	0	0	A ₂	Aı	Ao	Data Entry mode setting	A[2:0] = 0	
									Al	Av		setting The setting decrements made inde bit of the a 00 -Y de 01 -Y de 10 -Y ince 11 -Y ince A[2] = AM Set the directounter is written to the AM= 0, the X direction	g of incrementing or ging of the address counter can be pendently in each upper and lower ddress. Herement, X decrement, ecrement, X increment, rement, X increment, rement, X increment [POR] If the ection in which the address updated automatically after data are the RAM. The address counter is updated in the
0	0	12	0	0	0	1	0	0	1	0	SW RESET	S/W Reset R10h-Dee During ope high.	e commands and parameters to their t default values except p Sleep Mode eration, BUSY pad will output

0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 11 1 1 0 1 1 1	14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	A6	D5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	A4 1 0	0	1 A2	0 A1	0 0 Ao	HV Ready Detection	HV ready detection A[7:0] = 00h [POR] The command required CLKEN=1 and ANALOGEN=1. Refer to Register 0x22 for detail. After this command initiated, HV Ready detection starts. BUSY pad will output high during detection. The detection result can be read from the Status Bit Read (Command 0x2F). A[6:4]=n for cool down duration: 10ms x (n+1) A[2:0]=m for number of Cool Down Loop to detect. The max HV ready duration is 10ms x (n+1) x (m) HV ready detection will be trigger after each cool down time. The detection will be
0 1	0 1	15 0	A6	A5	A4	0				HV Ready Detection	A[7:0] = 00h [POR] The command required CLKEN=1 and ANALOGEN=1. Refer to Register 0x22 for detail. After this command initiated, HV Ready detection starts. BUSY pad will output high during detection. The detection result can be read from the Status Bit Read (Command 0x2F). A[6:4]=n for cool down duration: 10ms x (n+1) A[2:0]=m for number of Cool Down Loop to detect. The max HV ready duration is 10ms x (n+1) x (m) HV ready detection will be trigger after each cool down time. The detection will be
0 0	0 1	15 0	0	0	1		A2	Aı	Ao		10ms x (n+1) A[2:0]=m for number of Cool Down Loop to detect. The max HV ready duration is 10ms x (n+1) x (m) HV ready detection will be trigger after each cool down time. The detection will be
	_		_	- 22		0					completed when HV is ready. For 1 shot HV ready detection, A[7:0] can be set as 00h.
0 1	_		0	0			1	0	1	VCI Detection	VCI Detection
						0	A2	Aı	Ao		A[2:0] = 100 [POR], Detect level at 2.3V A[2:0]: VCI level Detect A[2:0] VCI level 011 2.2V 100 2.3V 101 2.4V 110 2.5V 111 2.6V Other NA The command required CLKEN=1 and ANALOGEN=1 Refer to Register 0x22 for detail. After this command initiated, VCI detection starts. BUSY pad will output high during detection. The detection result can be read from the Status Bit Read (Command 0x2F).
				•							
0 0		18 0 A:	-	0 As	1 A4	1 A3	0 A ₂	Aı	O Ao	Temperature Sensor Control	Temperature Sensor Selection A[7:0] = 48h [POR], external temperature sensor A[7:0] = 80h Internal temperature sensor
0 0	0 1	1A 0	0	0	1	1	0	1	0	Temperature Sensor	Write to temperature register.
0 1	1	Aı	1 A10	A9	A ₈	A7	A ₆	A ₅	A ₄	Control (Write to	A[11:0] = 7FFh [POR]
0 1	1	A	3 A2	Aı	Ao	0	0	0	0	temperature register)	
0 0	ΑΤ.	1B 0	0	0	1	1	0	1	1	Temperature Sensor	Read from temperature register.
1 1	() [1	Aı		A ₉	As	A ₇	A ₆	A ₅	A ₄	Control (Read from	F
1 1		7 4.1	A2	Aı	Ao	0	0	0	0	temperature register)	

Com	mand	Tab	le									
	D/C#		D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	1C	0	0	0	1	1	1	0	0	Temperature Sensor	Write Command to External temperature
0	1		A7	A ₆	A ₅	A ₄	A ₃	A ₂	Aı	Ao	Control (Write Command	sensor.
0	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	Bı	Bo	to External temperature	A[7:0] = 00h [POR],
											sensor)	B[7:0] = 00h [POR],
0	1		C7	C ₆	C5	C ₄	Сз	C ₂	Cı	Co		C[7:0] = 00h [POR],
												A[7:6] A[7:6] Select no of byte to be sent 00 Address + pointer 01 Address + pointer + 1st parameter 10 Address + pointer + 1st parameter + 2nd pointer 11 Address A[5:0] - Pointer Setting B[7:0] - 1st parameter C[7:0] - 2nd parameter The command required CLKEN=1. Refer to Register 0x22 for detail. After this command initiated, Write Command to external temperature sensor starts. BUSY pad will output high during operation.
0	0	20	0	0	1	0	0	0	0	0	Master Activation	Activate Display Update Sequence The Display Update Sequence Option is located at R22h. BUSY pad will output high during operation. User should not interrupt this operation to avoid corruption of panel images.
_		21	0	_					_			PAM content ention for Dignley Undete
0	0	21	0	0	1	0	0	0	0	1	Display Update Control 1	RAM content option for Display Update A[7:0] = 00h [POR]
0	1		A7	A ₆	A ₅	A ₄	Аз	A ₂	Aı	Ao		B[7:0] = 00h [POR]
0	1		В7	0	0	0	0	0	0	0		457 43 75 4 75 4 75
												A[7:4] Red RAM option
												0000 Normal 0100 Bypass RAM content as 0
												0100 Bypass RAM content as 0 1000 Inverse RAM content
												1000 Inverse KAIVI content
												A[3:0] BW RAM option
												0000 Normal
												0100 Bypass RAM content as 0
												1000 Inverse RAM content
												B[7] Source Output Mode 0 Available Source from S0 to S175
												1 Available Source from S8 to S167

_		Tab					San Land	Washington .					
W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description	
0	0	22	0 A ₇	0 A6	1 A5	0 A4	0 A3	0 A ₂	1 Aı	0 Ao	Display Update Control 2	Display Update Sequence Option: Enable the stage for Master Activ A[7:0]= FFh (POR)	: ation
												Operating sequence	Parameter (in Hex)
												Enable clock signal	80
												Disable clock signal	01
												Enable clock signal → Enable Analog	_ C0
												Disable Analog → Disable clock signal	03
												Enable clock signal → Load LUT with DISPLAY Mode 1 → Disable clock signal	91
												Enable clock signal → Load LUT with DISPLAY Mode 2 → Disable clock signal	99
												Enable clock signal → Load temperature value → Load LUT with DISPLAY Mode 1 → Disable clock signal	В1
												Enable clock signal → Load temperature value → Load LUT with DISPLAY Mode 2 → Disable clock signal	В9
												Enable clock signal → Enable Analog → Display with DISPLAY Mode 1 → Disable Analog → Disable OSC	C7
												Enable clock signal → Enable Analog → Display with DISPLAY Mode 2 → Disable Analog → Disable OSC	CF
												Enable clock signal Enable Analog Load temperature value DISPLAY with DISPLAY Mode 1 Disable Analog Disable OSC	F7
												Enable clock signal → Enable Analog → Load temperature value → DISPLAY with DISPLAY Mode 2 → Disable Analog → Disable OSC	FF
	0	24	0	0	1	0	0	1	0	0	Write RAM (Black White)	After this command, data entries	will be
											/ RAM 0x24	written into the BW RAM until an command is written. Address poin advance accordingly	
												For Write pixel: Content of Write RAM(BW) = 1 For Black pixel: Content of Write RAM(BW) = 0	

	D/C#	Tab	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
												Description
0	0	26	0	0	1	0	0	1	1	0	Write RAM (RED)	After this command, data entries will be written into the RED RAM until another
											/ RAM 0x26	
												command is written. Address pointers will advance accordingly.
												au vanos autoramigry
												For Red pixel:
												Content of Write $RAM(RED) = 1$
												For non-Red pixel [Black or White]:
												Content of Write $RAM(RED) = 0$
0	0	27	0	0	1	0	0	1	1	1	Read RAM	After this command, data read on the
												MCU bus will fetch data from RAM.
												According to parameter of Register 41h to
												select reading RAM0x24/ RAM0x26, until
												another command is written. Address
												pointers will advance accordingly.
												The 1st byte of data read is dummy data.
												, , , , , , , , , , , , , , , , , , , ,
0	^	28	0	0	1	0	1	0	0	0	VCOM Sense	Enter VCOM consing conditions and bald
U	0	28	U	U	1	0	1	0	U	0	VCOM Sense	Enter VCOM sensing conditions and hold for duration defined in 29h before reading
												VCOM value.
												The sensed VCOM voltage is stored in
												register
												The command required CLKEN=1 and
												ANALOGEN=1
												Refer to Register 0x22 for detail.
												BUSY pad will output high during operation.
												operation.
0	^	20	^	0	1	0	1		^	1	VCOM C D	2.11
0	0	29	0	0	1	0	1	0	0	1	VCOM Sense Duration	Stabling time between entering VCOM sensing mode and reading acquired.
0	1		0	1	0	0	A ₃	A ₂	Αı	Ao		sensing mode and reading acquired.
												A[3:0] = 9h, duration = 10s.
												VCOM sense duration = $(A[3:0]+1)$ sec
0	0	2A	0	0	1	0	1	0	1	0	Program VCOM OTP	Program VCOM register into OTP
- 701		(100)	1000	10000								Control of the contro
												The command required CLKEN=1.
												Refer to Register 0x22 for detail.
												BUSY pad will output high during
												operation.
0	0	2B	0	0	1	0	1	0	1	1	Write Register for VCOM	This command is used to reduce glitch
0	1		0	0	0	0	0	1	0	0	Control	when ACVCOM toggle. Two data bytes
0	1		0	1	1	0	0	0	1	1	1	D04h and D63h should be set for this
-			0			"	"	"				command.

	mand		16														
/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Descripti	on				
0	0	2C	0 A ₇	0 A6	1 As	0 A4	1 A3	1 A ₂	0 A1	0 Ao	Write VCOM register		OM registe 00h [POR]	r from MO	CU interface		
												A[7:0]	VCOM	A[7:0]	VCOM		
												08h	-0.2	44h	-1.7		
												0Ch	-0.3	48h	-1.8		
												10h	-0.4	4Ch	-1.9		
												14h	-0.5	50h	-2		
												18h	-0.6	54h	-2.1		
												1Ch	-0.7	58h	-2.2		
												20h	-0.8	5Ch	-2.3		
												24h	-0.9	60h	-2.4		
												28h	-1	64h	-2.5		
												2Ch	-1.1	68h	-2.6		
												30h	-1.2	6Ch	-2.7		
												34h	-1.3	70h	-2.8		
												38h	-1.4	74h	-2.9		
												3Ch	-1.5	78h	-3		
												40h	-1.6	Other	NA		
0	0	2D	0	0	1	0	1	1	0	1	OTP Register Read for	Read Re	Read Register for Display Option:				
1	1		A7	A ₆	A ₅	A ₄	A3	A2	Aı	Ao	Display Option						
1	1		В7	B ₆	B ₅	B ₄	Вз	B2	Bı	Bo			A[7:0]: VCOM OTP Selection (Command 0x37, Byte A)				
1	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	Cı	Co		(Comma	and 0x37, B	yte A)			
1	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	Dı	D ₀		B[7:0]	VCOM Reg	ricter			
													and 0x2C)	Sister			
1	1		E7	E ₆	E ₅	E ₄	Ез	E ₂	Eı	Eo			,				
1	1		F7	F ₆	F5	F4	F3	F ₂	Fı	Fo			G[7:0]: Dis	-			
1	1		G7	G ₆	G5	G4	G ₃	G ₂	Gı	G ₀			and 0x37, B	yte B to B	Byte F) [5		
1	1		H ₇	H ₆	H5	H ₄	Нз	H ₂	Hı	Ho		bytes]					
1	1		I ₇	Ī ₆	Ŀ	I4	В	I ₂	Iı	· Io		H[7:0]~	K[7:0]: Wa	veform V	ersion		
1	1		J ₇	J ₆	J ₅	J ₄	J ₃	J ₂	J_1	Jo			and 0x37, B				
1	1		K7	K ₆	K5	K4	K3	K ₂	Kı	Ko		bytes]					
0	0	2E	0	0	1	0	1	1	1	0	User ID Read		Byte User I				
1	1		A ₇	A ₆	A ₅	A ₄	A3	A2	Aı	Ao			J[7:0]: User	ID (R38,	Byte A and		
1	1		В7	B ₆	B ₅	B ₄	Вз	B2	Bı	Bo		Byte J) [10 bytes]				
1	1		C ₇	C ₆	C ₅	C ₄	Сз	C ₂	Cı	Co	1						
1	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	Dı	D ₀							
1	1		E ₇	E ₆	Es	E ₄	E ₃	E ₂	Eı	Eo	-						
1	1		F7	F6	F ₅	F ₄	F ₃	F ₂	Fı	F ₀							
1	1		G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	Gı	Go	1						
											-						
1	1		H ₇	H ₆	H5	H ₄	Нз	H ₂	Hı	Ho	-						
1	1		Ъ	I 6	Ŀ	I ₄	B	Ŀ	Iı	Io							
1	1		J ₇	J_6	J ₅	J ₄	J ₃	J_2	Jı	Jo		1					

	mand											
/W#	D/C#	Hex	D 7	D6	D5	D4	D3	D2	D1	D0	Command	Description
1	1	2F	0	0	1 A5	0 A4	0	0	1 Aı	1 Ao	Status Bit Read	Read IC status Bit [POR 0x01] A[5]: HV Ready Detection flag [POR=0] 0: Ready 1: Not Ready A[4]: VCI Detection flag [POR=0]
												0: Normal 1: VCI lower than the Detect level A[3]: [POR=0] A[2]: Busy flag [POR=0] 0: Normal 1: BUSY A[1:0]: Chip ID [POR=01]
												Remark: A[5] and A[4] status are not valid after RESET, they need to be initiated by
												command 0x14 and command 0x15 respectively.
0	_	20	_		1	1	0	0	0	_	D WC OTD	Program OTP of Wayaform Satting
0	0	30	0	0	1	1	0	0	0	0	Program WS OTP	Program OTP of Waveform Setting The contents should be written into RAM before sending this command.
												The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.
0	0	31	0	0	1	1	0	0	0	1	Load WS OTP	Load OTP of Waveform Setting
												The command required CLKEN=1. Refer to Register 0x22 for detail.
												BUSY pad will output high during operation.
0	0	32	0	0	1	1.	0	0	1		Write LUT register	Write LUT register from MCU interface
0	1	32	A ₇	A ₆	1 As	1 A4	A3	A ₂	1 Aı	O Ao	write LOT register	[153 bytes], which contains the content of
0	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	Bı	Bo		VS[nX-LUTm], TP[nX], RP[n], SR[nXY]
0	1		:	:	:	:	:	:	:	:		FR[n] and XON[nXY] Refer to Session 6.7 WAVEFORM
0	1		٠.			·	·		·			SETTING
0	0	34	0	0	1	1	0	1	0	0	CRC calculation	CRC calculation command For details, please refer to SSD1680 application note.
												BUSY pad will output high during operation.
0	_	25	_		1		0		0		CDC States D. J.	CDC States Dead
1	0	35	0	0	1	1	0	1	0	1	CRC Status Read	CRC Status Read A[15:0] is the CRC read out value
1	1		A15	A14	A13		An	A10	A9	As	-	
1	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	Αı	Ao		

	mand					-			-			
W#	D/C#		D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	36	0	0	1	1	0	1	1	0	Program OTP selection	Program OTP Selection according to the OTP Selection Control [R37h and R38h]
												The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.
												•
0	0	37	0	0	1	1	0	1	1	1	Write Register for Display	Write Register for Display Option
0	1		A7	0	0	0	0	0	0	0	Option	A[7] Spare VCOM OTP selection
0	1		В7	B ₆	B5	B ₄	Вз	B2	Bı	Во		0: Default [POR] 1: Spare
0	1		C7	C ₆	C5	C4	Сз	C ₂	Cı	Co		1. Spare
0	1		D ₇	D ₆	D5	D ₄	D ₃	D ₂	Dı	D ₀		B[7:0] Display Mode for WS[7:0]
0	1		E7	E ₆	E5	E4	Ез	E2	Eı	Eo		C[7:0] Display Mode for WS[15:8]
0	1		0	F ₆	0	0	F ₃	F ₂	Fı	Fo	1	D[7:0] Display Mode for WS[23:16] E[7:0] Display Mode for WS[31:24]
0	1		G ₇	G ₆	G5	G ₄	G ₃	G ₂	Gı	Go	1	F[3:0 Display Mode for WS[35:32]
0	1		Н7	Н6	H5	H4	Нз	H ₂	Hı	Ho	1	0: Display Mode 1
0	1		Ī7	I ₆	Ŀ	I ₄	Iз	I ₂	Iı	Io	1	1: Display Mode 2
0	1		J ₇	J ₆	J ₅	J ₄	J ₃	J ₂	Jı	Jo	1	F[6]: PingPong for Display Mode 2
												0: RAM Ping-Pong disable [POR]
												1: RAM Ping-Pong enable
												G[7:0]~J[7:0] module ID /waveform
												version.
												Remarks:
												1) A[7:0]~J[7:0] can be stored in OTP
												2) RAM Ping-Pong function is not support for Display Mode 1
												Tot Display Wode 1
0	0	38	0	0	1	1	1	0	0	0	Write Register for User ID	Write Register for User ID
0	1		A7	A ₆	A ₅	A ₄	A3	A ₂	Aı	Ao		A[7:0]]~J[7:0]: UserID [10 bytes]
0	1		B ₇	B ₆	B ₅	B ₄	Вз	B2	Bı	Bo		B 1 1/2 01 1/2 01
0	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	Cı	Co	1	Remarks: A[7:0]~J[7:0] can be stored in OTP
0	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	Dı	D ₀	1	
0	1		E ₇	E ₆	Es	E ₄	Ез	E ₂	Eı	Eo	1	
0	1		F ₇	F ₆	F ₅	F ₄	F ₃	F ₂	Fı	Fo	1	
0	1		G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	Gı	Go	1	
0	1		H ₇	H ₆	H ₅	H ₄	Нз	H ₂	Hı	Ho	1	
0	1		I ₇	I ₆	Is	I4	В	I ₂	Iı	Io		
0	1		J ₇	J ₆	J ₅	J ₄	J ₃	J ₂	Jı	Jo	1	
			J.								I	
0	0	39	0	0	1	1	1	0	0	1	OTP program mode	OTP program mode
0	1		0	0	0	0	0	0	Αı	Ao		A[1:0] = 00: Normal Mode [POR]
												A[1:0] = 11: Internal generated OTP programming voltage
												programming vottage
												Remark: User is required to EXACTLY
												follow the reference code sequences

	mand			_			-	-	_		la .	la :	
/W#	D/C#		D7	D6	D5	D4	D3	D2	D1	D0	Command	Description	
0	0	3C	0	0	1	1	1	1	0	0	Border Waveform Control		er waveform for VBD
0	1		A7	A ₆	A5	A ₄	0	A ₂	Aı	Ao		A[7:0] = C A[7:6] : S	Oh [POR], set VBD as HIZ. elect VBD option
												A[7:6]	Select VBD as
												00	GS Transition,
													Defined in A[2] and
													A[1:0]
												01	Fix Level,
												01	Defined in A[5:4]
												10	VCOM
												11[POR]	HiZ
												A [5:4] Fix	x Level Setting for VBD
												A[5:4]	VBD level
												00	VSS
												01	· VSH1
												10	VSL
												11	VSH2
												11	V 5112
												A[2] GS T	ransition control
												A[2]	GS Transition control
												0	Follow LUT
													(Output VCOM @ RED)
												1	Follow LUT
												A [1:0] GS	S Transition setting for VBD
												A[1:0]	VBD Transition
												00	LUT0
												01	LUT1
												10	LUT2
												11	LUT3
0	0	3F	0	0	1	1	1	1	1	1	End Option (EOPT)	Option for	
0	1		A7	A ₆	A ₅	A ₄	Аз	A ₂	Aı	Ao		A[7:0] = 02	h [POR]
	•		717	710	113	714	713	712	2 1 1	710		22h No	ormal.
												07h So	urce output level keep
												pre	evious output before power off
0	0	41	0	1	0	0	0	0	0	1	Read RAM Option	Read RAM	
0	1		0	0	0	0	0	0	0	Ao		A[0] = 0 [P(0)]	OR]
	177						753					0: Read R	AM corresponding to RAM0x24 1
												: Read RA	M corresponding to RAM0x26
	0	44	0	1	0	0	0	1	0	0	Cot DAM V add	Specify the	start/end positions of the
0		44	177						- (Set RAM X - address Start / End position		dress in the X direction by an
0			0	0	A ₅	A ₄	A3	A ₂	Aı	Ao	Suit / Life position		t for RAM
0	1				B ₅	B ₄	Вз	B ₂	Bı	Bo		addiess ulli	io ioi ionii
			0	0	l .		l .					A[5:0]: XS	A[5:0], $XStart$, $POR = 00h$
0	1		0	0									
0	1		0	0								B[5:0]: XE	A[5:0], XEnd, POR = $15h$
0	1	15						1	0	1	la . p v.		A[5:0], XEnd, POR = 15h
0	1 1 0	45	0	1	0	0	0	1	0	1	Set Ram Y- address	Specify the	A[5:0], XEnd, POR = 15h start/end positions of the
0 0 0	1 1 0 1	45	0 A ₇	1 A6	A5	A ₄	Аз	A ₂	Aı	Ao	Set Ram Y- address Start / End position	Specify the	A[5:0], XEnd, POR = 15h start/end positions of the dress in the Y direction by an
0 0 0 0 0	0 1 1	45	0 A ₇ 0	1 A6 0	A5	A ₄	A ₃	A ₂	A ₁	Ao As		Specify the window address uni	A[5:0], XEnd, POR = 15h start/end positions of the dress in the Y direction by an it for RAM
0 0 0	1 1 0 1	45	0 A ₇	1 A6	A5	A ₄	Аз	A ₂	Aı	Ao		Specify the window address unit	A[5:0], XEnd, POR = 15h start/end positions of the dress in the Y direction by an

om	mand	Tab	le												
Z/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Descriptio	n		
0	0	46	0	1	0	0	0	1	1	0	Auto Write RED RAM for	Auto Write	RED RAI	M for Regu	lar Pattern
0	1		A7	A ₆	A5	A ₄	0	A ₂	Aı	Ao	Regular Pattern	A[7:0] = 0	0h [POR]		
												A[7]: The 1st step value, POR = 0 A[6:4]: Step Height, POR= 000 Step of alter RAM in Y-direction according t			
												Gate			10040
												A[6:4]	Height	A[6:4]	Height
												000	8	100	· 128
												001	16	101	256
												010	32	110	296
												011	64	111	NA
												A[2:0]: Ste Step of alto Source			according
												A[2:0]	Width	A[2:0]	Width
												000	8	100	128
												001	16	101	176
												010	32	110	NA
												011	64	111	NA
												BUSY pad operation.	will outpu	t high durii	ng
0	0	47	0	1	0	0	0	1	1	1	Auto Write B/W RAM for	Auto Write	B/W RAN	M for Regu	lar Pattern
0	1		A ₇	A ₆	A ₅	A ₄	0	A ₂	Aı	Ao	Regular Pattern	A[7:0] = 0			
				710	713	714		712	711	710		Gate	ep Height, ler RAM in	POR= 000 Y-direction	according
												A[6:4]	Height	A[6:4]	Height
												000	8	100	128
												001	16	101	256
												010	32	110	296
												011	64	111	
													01	111	NA
												A[2:0]: Sto	ep Width, F	POR= 000	NA NA
												A[2:0]: Step of alto Source	ep Width, F er RAM in	POR= 000 X-direction	
												A[2:0]: Ste Step of alto	ep Width, F	POR= 000	according
												A[2:0]: Ste Step of alte Source A[2:0]	ep Width, Fer RAM in Width	POR= 000 X-direction A[2:0]	width
												A[2:0]: Step of alto Source A[2:0] 000 001	ep Width, Fer RAM in Width 8 16	POR= 000 X-direction A[2:0] 100 101	Width 128 176
												A[2:0]: Ste Step of alte Source A[2:0]	ep Width, Fer RAM in Width	POR= 000 X-direction A[2:0]	width

Com	mand	Tab	le												
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description			
0	0	4E	0	1	0	0	1	1	1	0	Set RAM X address	Make initial settings for the RAM X			
0	1		0	0	A5	A4	Аз	A ₂	Αı	Ao	counter	address in the address counter (AC) A[5:0]: 00h [POR].			
0	0	4F	0	1	0	0	1	1	1	1	Set RAM Y address	Make initial settings for the RAM Y			
0	1		A7	A ₆	A ₅	A ₄	Аз	A ₂	Aı	Ao	counter	address in the address counter (AC)			
0	1		0	0	0	0	0	0	0	As		A[8:0]: 000h [POR].			
												•			
0	0	7F	0	1	1	1	1	1	1	1	NOP	This command is an empty command; it does not have any effect on the display module. However it can be used to terminate Frame Memory Write or Read Commands.			

3. Environmental

3. 1 HANDLING, SAFETYAND ENVIROMENTAL REQUIREMENTS

WARNING

The display glass may break when it is dropped or bumped on a hard surface. Handle with care. Should the display break, do not touch the electrophoretic material. In case of contact with electrophoretic material, wash with water and soap.

CAUTION

The display module should not be exposed to harmful gases, such as acid and alkali gases, which corrode electronic components.

Disassembling the display module can cause permanent damage and invalidate the warranty agreements.

IPA solvent can only be applied on active area and the back of a glass. For the rest part, it is not allowed.

Observe general precautions that are common to handling delicate electronic components. The glass can break and front surfaces can easily be damaged. Moreover the display is sensitive to static electricity and other rough environmental conditions.

Mounting Precautions

- (1) It's recommended that you consider the mounting structure so that uneven force (ex. Twisted stress) is not applied to the module.
- (2) It's recommended that you attach a transparent protective plate to the surface in order to protect the EPD. Transparent protective plate should have sufficient strength in order to resist external force.
- (3) You should adopt radiation structure to satisfy the temperature specification.

- (4) Acetic acid type and chlorine type materials for the cover case are not desirable because the former generates corrosive gas of attacking the PS at high temperature and the latter causes circuit break by electro-chemical reaction.
- (5) Do not touch, push or rub the exposed PS with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment. Do not touch the surface of PS for bare hand or greasy cloth. (Some cosmetics deteriorate the PS)
- (6) When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials like chamois soaks with petroleum benzene. Normal-hexane is recommended for cleaning the adhesives used to attach the PS. Do not use acetone, toluene and alcohol because they cause chemical damage to the PS.
- (7) Wipe off saliva or water drops as soon as possible. Their long time contact with PS causes deformations and color fading.

Product specification	The data sheet contains final product specifications.
	Limiting values

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and dose not form part of the specification.

Product Environmental certification

ROHS

REMARK

All The specifications listed in this document are guaranteed for module only. Post-assembled operation or component(s) may impact module performance or cause unexpected effect or damage and therefore listed specifications is not warranted after any Post-assembled operation.

3.2 Reliability test

	TEST	CONDITION
1	High-Temperature Operation	T=70°C, RH=40%RH, For 240hrs
1	Ingh-remperature Operation	Test in white pattern
2	Low-Temperature Operation	T = -25°C for 240 hrs
	Low Temperature Operation	Test in white pattern
3	High-Temperature Storage	T=50°C , RH=35%RH, For 240 hrs
4	Low-Temperature Storage	T = 0°C, for 240 hrs
5	High Temperature, High Humidity Operation	T=40°C, RH=80%RH, For 240hrs
6	High Temperature, High Humidity Storage	T=50°C, RH=80%RH, For 240hrs Test in white pattern

		2.5 men 11 1 uper
7	Temperature Cycle	-25°C (30min) ~ 70°C(30min), 50 Cycle Test in white pattern
8	UV exposure Resistance	765 W/m ² for 168hrs,40°C
9	ESD Gun	Air+/-15KV; Contact+/-8KV (Test finished product shell, not display only) Air+/-8KV; Contact+/-6KV (Naked EPD display, no including IC and FPC area) Air+/-4KV; Contact+/-2KV (Naked EPD display, including IC and FPC area)

Note: Put in normal temperature for 1hour after test finished, display performance is ok.

4. Electrical Characteristics

4. 1 ABSOLUTE MAXIMUM RATING

Symbol	Parameter	Rating	Unit
V CI	Logic supply voltage	-0.5 to +4.0	V
VIN	Logic Input voltage	-0.5 to VCI +0.5	V
V OUT	Logic Output voltage	-0.5 to VCI +0.5	V
T OPR	Operation temperature range	0~50	°C
T STG	Storage temperature range	-25~70	°C
T STGo	Optimal Storage Temp	23 ± 2	°C
H STGo	Optimal Storage Humidity	55 ± 10	%RH

^{*} Note: Avoid direct sunlight.

Table 4.1-1: Maximum Ratings

Note: Maximum ratings are those values beyond which damages to the device may occur.

Functional operation should be restricted to the limits in the Electrical Characteristics chapter.

4. 2 DC CHARACTERISTICS

The following specifications apply for: VSS=0V, VCI=3.0V, TOPR=25°C.

Table 4.2-1: DC Characteristics

Symbol	Parameter	Test Condition	Applicable pin	Min.	Тур.	Max.	Unit
VSS	Single ground	-		-	0	-	V
VCI	VCI operation voltage	-	VCI	2.2	3.0	3.7	V
VDD	Core logic voltage		VDD	1.7	1.8	1.9	V
VIH	High level input voltage	-		0.8 VCI		-	V
VIL	Low level input voltage	-		-		0.2 VCI	V
VOH	High level output voltage	IOH = -100uA		0.9 VCI	9	-	V
VOL	Low level output voltage	IOL = 100uA				0.1 VCI	V
PTYP	Typical power	VCI = 3.0V					mW
PSTPY	Deep sleep mode	VCI = 3.0V			0.003		mW

						2.7 IIICII L	
Iopr_VCI	Typical operating current	VCI = 3.0V		-	3		mA
	Full update time	25°C			3		sec
-	Fast update time	25°C			1.5		sec
	Partial update time	25°C			0.3		sec
		DC/ DC off					
Idala VCI	Module operating current No clock		20		uA		
Idslp_VCI	No input load Ram			-	20		uA
		data retain					
		DC/ DC off					
Lala VCI	Danielan mada	No clock			1	_	
Islp_VCI	Deep sleep mode	No input load Ram	-	-		5	uA
		data not retain					

Notes:

- 1) Refresh time: the time it takes for the whole process from the screen change to the screen stabilization.
- 2) The difference between different refresh methods:

Full refresh: The screen will flicker several times during the refresh process; Fast Refresh: The screen will flash once during the refresh process;

During the fast refresh or partial refresh of the electronic paper, it is recommended to add a full-screen refresh after 5 consecutive operations to reduce the accumulation of afterimages on the screen.

- 1. The typical power is measured with following transition from horizontal pattern to vertical pattern. (Note4.2-1)
- 2. The deep sleep power is the consumed power when the panel controller is in deep sleep mode.
- 3.The listed electrical/optical characteristics are only guaranteed under the controller & waveform provided by Seengreat.

Note 4.2-1

The Typical power consumption

4.3 Serial Peripheral Interface Timing

The following specifications apply for: VDDIO - VSS = 2.2V to 3.7V, CL=20pF

Write mode

Symbol	Parameter	Min	Тур	Max	Unit
fSCL	SCL frequency (Write Mode)	1	-	20	MHz
tCSSU	Time CS# has to be low before the first rising edge of SCLK	60	-	-	ns
tCSHLD	Time CS# has to remain low after the last falling edge of SCLK	65	-	-	ns
tCSHIGH	Time CS# has to remain high between two transfers	100	-	-	ns
tSCLHIGH	Part of the clock period where SCL has to remain high	25	ı	-	ns

tSCLLOW	Part of the clock period where SCL has to remain low	25	-	-	ns
tSISU	Time SI (SDA Write Mode) has to be stable before the next rising edge of SCL	10	-	-	ns
tSIHLD	Time SI (SDA Write Mode) has to remain stable after the rising edge of SCL	40	-	-	ns

Read mode

Symbol	Parameter	Min	Тур	Max	Unit
fSCL	SCL frequency (Read Mode)	-	-	2.5	MHz
tCSSU	Time CS# has to be low before the first rising edge of SCLK	100	-	-	ns
tCSHLD	Time CS# has to remain low after the last falling edge of SCLK	50	-	-	ns
tCSHIGH	Time CS# has to remain high between two transfers	250	-	-	ns
tSCLHIGH	Part of the clock period where SCL has to remain high	180	-	-	ns
tSCLLOW	Part of the clock period where SCL has to remain low	180	-	-	ns
tSOSU	Time SO(SDA Read Mode) will be stable before the next rising edge of SCL	-	50	-	ns
tSOHLD	Time SO (SDA Read Mode) will remain stable after the falling edge of SCL	-	0	-	ns

Note: All timings are based on 20% to 80% of VDDIO-VSS

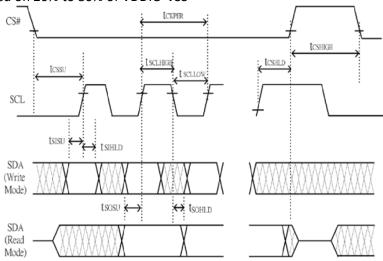


Figure 4.3-1: Serial peripheral interface characteristics

4.4 MCU Interface

4.4-1 MCU interface selection

The 2.7inch e-Paper can support 3-wire/4-wire serial peripheral interface. In the Module, the MCU interface is pin selectable by BS1 pins shown in.

Table 4.4-1: MCU interface selection

BS1	MPU Interface
L	4-lines serial peripheral interface (SPI)
Н	3-lines serial peripheral interface (SPI) - 9 bits SPI

Note: L is connected to VSS and H is connected to VDDIO

4.4-2 MCU Serial Peripheral Interface (4-wire SPI)

The 4-wire SPI consists of serial clock SCL, serial data SDA, D/C# and CS#,The control pins status in 4-wire SPI in writing command/data is shown in Table 4.4-2 and the write procedure 4-wire SPI is shown in Figue 4.4-2.

Table 4.4-2 : Control	pins status of 4-wire S	PI
-----------------------	-------------------------	----

Function	SCL pin	SDA pin	D/C# pin	CS# pin
Write command	1	Command bit	L	L
Write data	↑	Data bit	Н	L

Note:

- (1) L is connected to VSS and H is connected to VDDIO
- (2) ↑ stands for rising edge of signal

In the write mode:

SDA is shifted into an 8-bit shift register on every rising edge of SCL in the order of D7, D6, ... D0. The level of D/C# should be kept over the whole byte. The data byte in the shift register is written to the Graphic Display Data RAM (RAM)/Data Byte register or command Byte register according to D/C# pin.

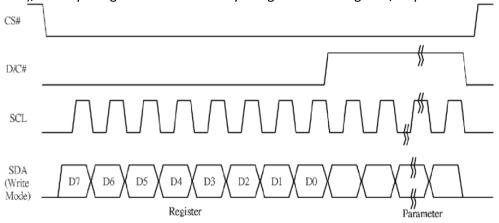


Figure 4.4-1: Write procedure in 4-wire SPI mode

In the read mode:

After CS# is pulled low, the first byte sent is command byte, D/C# is pulled low. After command byte sent, the following byte(s) read are data byte(s), so D/C# bit is then pulled high. An 8-bit data will be shifted out on every clock falling edge. The serial data SDA bit shifting sequence is D7, D6, to D0 bit. Figure 6-2 shows the read procedure in 4-wire SPI.

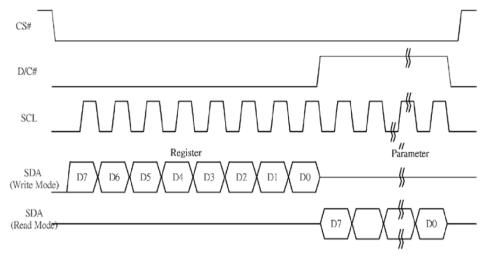


Figure 4.4-2: Read procedure in 4-wire SPI mode

4.4-3 MCU Serial Peripheral Interface (3-wire SPI)

The 3-wire SPI consists of serial clock SCL, serial data SDA and CS#. The operation is similar to 4-wire SPI while D/C# pin is not used and it must be tied to LOW. The control pins status in 3-wire SPI is shown in Table 4.4-3.

Table 4.4-3: Control pins status of 3-wire SPI

Function	SCL pin	SDA pin	D/C# pin	CS# pin
Write	1	Command	Tie LOW	L
Write data	1	Data bit	Tie LOW	L

Note:

- (1)L is connected to VSS and H is connected to VDDIO
- (2)↑ stands for rising edge of signal

In the write operation:

The operation is similar to 4-wire serial interface while D/C# pin is not used. There are altogether 9-bits will be shifted into the shift register on every ninth clock in sequence: D/C# bit, D7 to D0 bit. The D/C# bit (first bit of the sequential data) will determine the following data byte in the shift register is written to the Display Data RAM (D/C# bit = 1) or the command register (D/C# bit = 0).

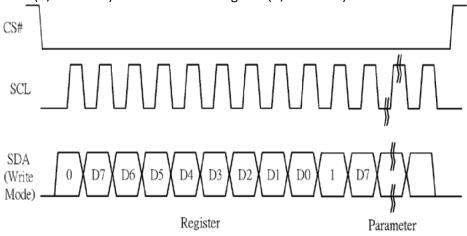


Figure 4.4-3: Write procedure in 3-wire SPI mode

In the read mode:

After driving CS# to low, MCU need to define the register to be read. D/C=0 is shifted thru SDA with one rising edge of SCL. SDA is shifted into an 8-bit shift register on every rising edge of SCL in the order of D7, D6, ... D0. D/C=1 is shifted thru SDA with one rising edge of SCL. SDA is shifted out an 8-bit data on every falling edge of SCL in the order of D7, D6, ... D0. Depending on register type, more than 1 byte can be read out. After all byte are read, CS# need to drive to high to stop the read operation.

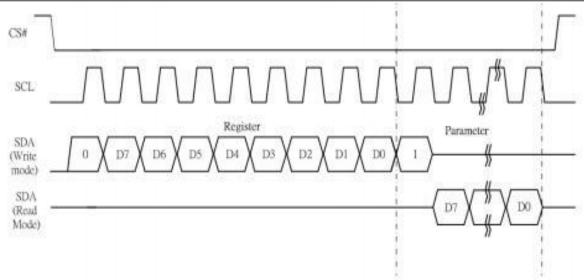
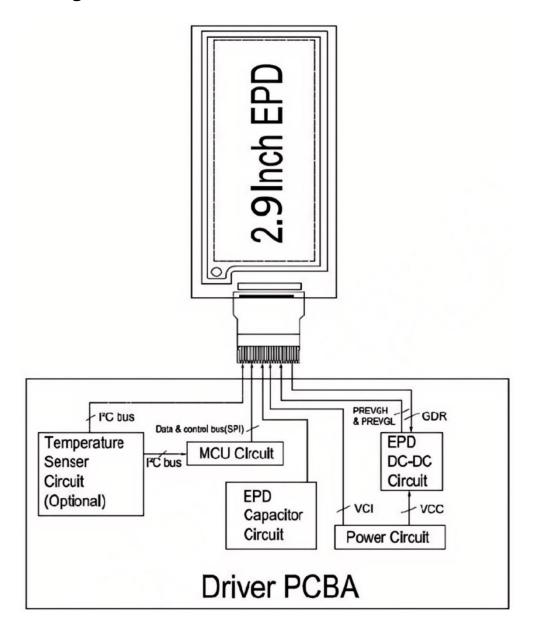
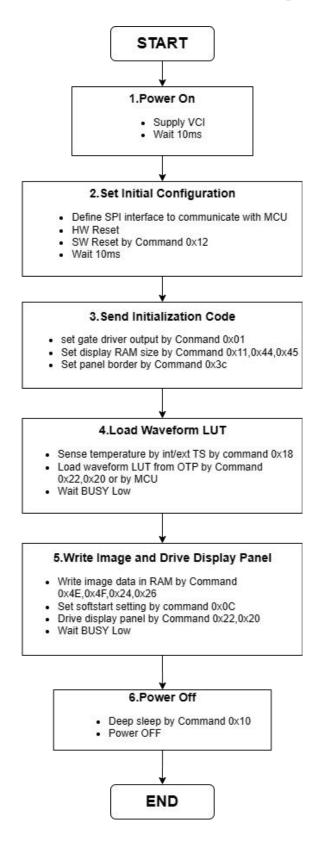



Figure 4.4-4: Read procedure in 3-wire SPI mode


4.4 Block Diagram

5. Typical Operating Sequence

5.1 General operation flow to drive display panel

6. Optical characteristics

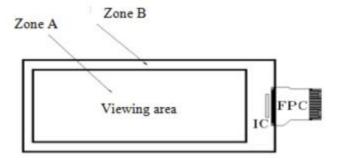
6.1 Specifications

Measurements are made with that the illumination is under an angle of 45 degrees, the detection is perpendicular unless otherwise specified.

T=25°C

SYMBOL	PARAMETER	CONDITIONS	MIN	ТҮРЕ	MAX	UNIT	Note
R	White	white	30	35	-	%	Note 6-1
	Reflectivity						
GN	2Grey Level	-	-	DS+(WS-DS)×n(m-1)	-		
CR	Contrast Ratio	Indoor	8:1		-	-	Note 6-2
Life	-	Topr		1000000times or 5years	-	-	

m:2


WS : White state DS : Dark stat

Note 6-1: Luminance meter : Eye - One Pro Spectrophotometer.

Note 6-2: CR=Surface Reflectance with all white pixel/Surface Reflectance with all black pixels.

7. Point and line standard

Temperature: $25 \pm 3^{\circ}$ C; Humidity: $55 \pm 10\%$ RH; Brightness: $1200^{\sim}1500$ LUX; distance: 20-30CM; Angle: Relate 30° surround.

7.1 Electric inspection standard

NO.	Item	Standard	Defect level	Method	Scope
1	Display	Display complete Display uniform	MA		
2	Black/White spots	D≤0.25mm, Allowed 0.25mm < D≤0.4mm ∘ N≤3, and Distance≥5mm 0.4mm < D Not Allow	MI	Visual inspection	
3	Black/White spots (No switch)	L≤0.6mm, W≤0.2mm, N≤1 L≤2.0mm, W>0.2mm, Not Allow L>0.6mm, Not Allow	8.76380	Visual/ Inspection card	Zone A
4	Ghost image	Allowed in switching process	MI	Visual inspection	
5	Flash spots/ Larger FPL size	Flash spots in switching, Allowed FPL size larger than viewing area, Allowed	MI	Visual/ Inspection card	Zone A Zone B
6	Display wrong/Missing	All appointed displays are showed correct	MA	Visual inspection	Zone A
7	Short circuit/ Circuit break/ Display abnormal	Not Allow	inspection		

7.2 Appearance inspection standard

NO.	Item	Standard	Defect level	Method	Scope
1	B/W spots /Bubble/ Foreign bodies/ Dents	D=(L+W)/2 D≤0.25mm, Allowed 0.25mm <d≤0.4mm, d="" n≤3="">0.4mm, Not Allow</d≤0.4mm,>	MI	Visual inspection	Zone A
2	Glass crack	Not Allow	MA	Visual	Zone A Zone B
3	Dirty	Allowed if can be removed	MI	/ Microscope	Zone A Zone B
4	Chips/Scratch/ Edge crown	X≤3mm, Y≤0.5mmAnd without affecting the electrode is permissible 2mm≤X or 2mm≤Y Not Allow W≤0.1mm,L≤5mm, No harm to the electrodes and N≤2 allow	MI	Visual / Microscope	Zone A Zone B

8. Precautions

- (1) Do not apply pressure to the EPD panel in order to prevent damaging it.
- (2) Do not connect or disconnect the interface connector while the EPD panel is in operation.
- (3) Do not touch IC bonding area. It may scratch TFT lead or damage IC function.
- (4) Please be mindful of moisture to avoid its penetration into the EPD panel, which may cause damage during operation.
- (5) If the EPD Panel / Module is not refreshed every 24 hours, a phenomena known as "Ghosting" or "Image Sticking" may occur. It is recommended to refreshed the ESL /

EPD Tag every 24 hours in use case. It is recommended that customer ships or stores the ESL / EPD Tag with a completely white image to avoid this issue

(6) High temperature, high humidity, sunlight or fluorescent light may degrade the EPD panel's performance. Please do not expose the unprotected EPD panel to high temperature, high humidity, sunlight, or fluorescent for long periods of time.