

2.13inch E-Paper

Product Specifications

Customer	Standard
Description	2.13 E-paper Display
Model Name	2.13inch E-Paper
Date	2023/03/17
Revision	1.0

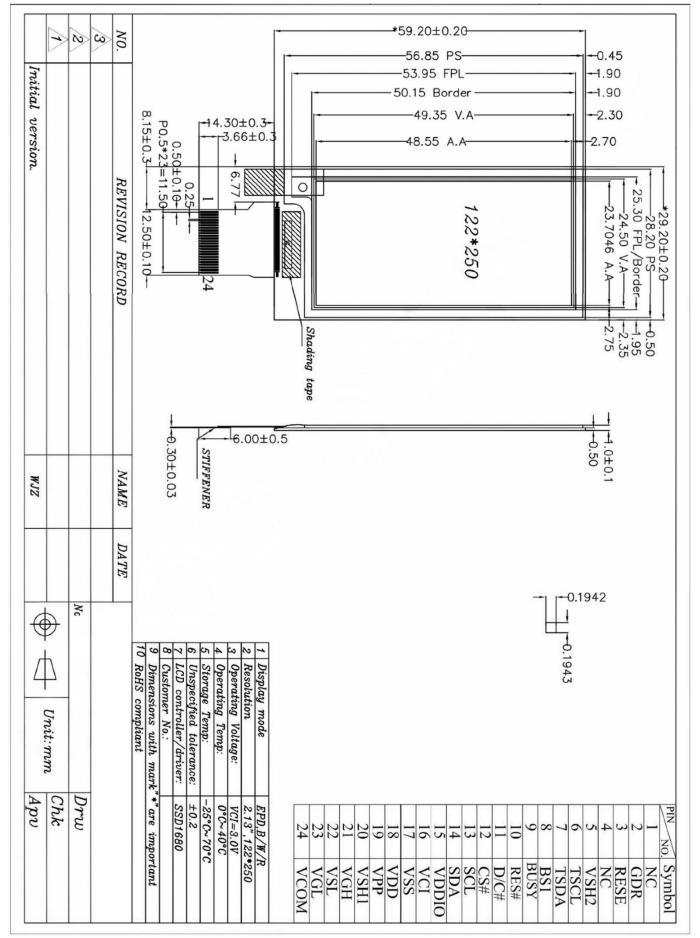
Table of contents

1. General Description	1
1.1 Over View	1
1.2 Features	1
1.3 Mechanical Specifications	1
1.4 Mechanical Drawing of EPD module	2
1.5 Reference Circuit	3
1.6 Input/Output Pin Assignment	4
2. COMMAND TABLE	5
3. Environmental	
3.1 HANDLING, SAFETYAND ENVIROMENTAL REQUIREMENTS	
3.2 Reliability test	19
4. Electrical Characteristics	20
4.1 ABSOLUTE MAXIMUM RATING	20
4.2 DC CHARACTERISTICS	
4.3 Serial Peripheral Interface Timing	21
4.3 Serial Peripheral Interface Timing 4.4 MCU Interface	
	22
4.4 MCU Interface	
4.4 MCU Interface 4.4-1 MCU interface selection	
4.4 MCU Interface 4.4-1 MCU interface selection 4.4-2 MCU Serial Peripheral Interface (4-wire SPI)	
 4.4 MCU Interface	
 4.4 MCU Interface	22 22 22 23 23 25 26
 4.4 MCU Interface	22 22 22 23 23 25 26 26
 4.4 MCU Interface	22 22 22 23 23 25 26 26 27
 4.4 MCU Interface	22 22 22 23 23 25 26 26 26 27 27
 4.4 MCU Interface	22 22 22 23 23 25 26 26 26 27 27 27
 4.4 MCU Interface	22 22 22 23 23 25 26 26 26 27 27 27 27 27

1. General Description

1.1 Over View

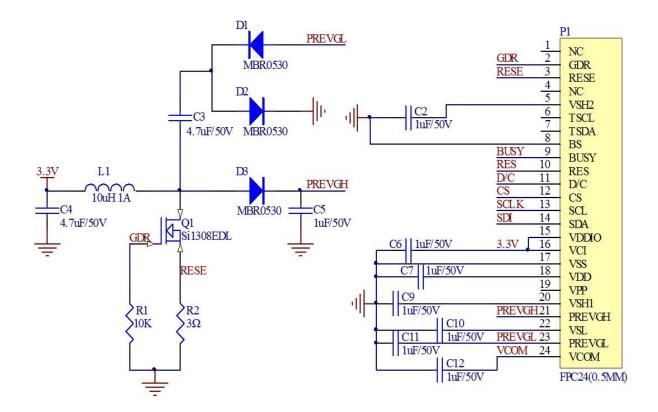
2.13inch e-Paper is an Active Matrix Electrophoretic Display (AMEPD), with interface and a reference system design. The 2.13" active area contains 250 × 122 pixels, and has 1-bit Black/White full display capabilities. An integrated circuit contains gate buffer, source buffer, interface, timing control logic, oscillator, DC-DC, SRAM, LUT, VCOM and border are supplied with each panel.


1.2 Features

- ■250 × 122 pixels display
- High contrast
- High reflectance
- Ultra wide viewing angle
- Ultra low power consumption
- Pure reflective mode
- Bi-stable display
- Commercial temperature range
- Landscape, portrait modes
- Hard-coat antiglare display surface
- •Ultra Low current deep sleep mode
- On chip display RAM
- Waveform can stored in On-chip OTP or written by MCU
- Serial peripheral interface available
- On-chip oscillator
- •On-chip booster and regulator control for generating VCOM, Gate and Source driving voltage
- ■I2C signal master interface to read external temperature sensor/built-in temperature sensor

1.3 Mechanical Specifications

Parameter	Specifications	Unit	Remark
Screen Size	2.13	Inch	
Display Resolution	250(V) × 122(H)	Pixel	Dpi:130
Active Area	48.55 (V) × 23.7 (H)	mm	
Pixel Pitch	0.1943 × 0.1943	mm	
Pixel Configuration	Square		
Outline Dimension	59.2(V) × 29.2(H) × 1.05(D)	mm	
Weight	3.2 ± 0.5	g	


2.13inch E-Paper RBW

1.4 Mechanical Drawing of EPD module

1.5 Reference Circuit

Note:

- 1. Inductor L1 is wire-wound inductor. There are no special requirements for other parameters.
- 2. Suggests using Si1304BDL or Si1308EDL TUBE MOS (Q1), otherwise it may affect the normal boost of the circuit.
- 3. The default circuit is 4-wire SPI.
- 4. Default voltage value of all capacitors is 50 V.

1.6 Input/Output Pin Assignment

Pin #	Single	Description	Remark
1	NC	No connection and do not connect with other NC pins	Keep Open
2	GDR	N-Channel MOSFET Gate Drive Control	
3	RESE	Current Sense Input for the Control Loop	
4	NC	No connection and do not connect with other NC pins e	Keep Open
5	VSH2	This pin is Positive Source driving voltage	
6	TSCL	I ² C Interface to digital temperature sensor Clock pin	
7	TSDA	I ² C Interface to digital temperature sensor Date pin	
8	BS1	Bus selection pin	Note 1.6-5
9	BUSY	Busy state output pin	Note 1.6-4
10	RES #	Reset	Note 1.6-3
11	D/C #	Data /Command control pin	Note 1.6-2
12	CS #	Chip Select input pin	Note 1.6-1
13	SCL	serial clock pin (SPI)	
14	SDA	serial data pin (SPI)	
15	VDDIO	Power for interface logic pins	
16	VCI	Power Supply pin for the chip	
17	VSS	Ground	
18	VDD	Core logic power pin	
19	VPP	Power Supply for OTP Programming	
20	VSH1	This pin is Positive Source driving voltage	
21	VGH	This pin is Positive Gate driving voltage	
22	VSL	This pin is Negative Source driving voltage	
23	VGL	This pin is Negative Gate driving voltage	
24	VCOM	These pins are VCOM driving voltage	

Note 1.6-1: This pin (CS#) is the chip select input connecting to the MCU. The chip is enabled for MCU communication only when CS# is pulled LOW.

Note 1.6-2: This pin (D/C#) is Data/Command control pin connecting to the MCU. When the pin is pulled HIGH, the data will be interpreted as data. When the pin is pulled LOW, the data will be interpreted as command.

Note 1.6-3: This pin (RES#) is reset signal input. The Reset is active low.

- Note 1.6-4: This pin(BUSY#) is state output pin. When Busy is High, the operation of chip should not be interrupted, command should not be sent. The chip would put Busy pin High when Outputting display waveform -Communicating with digital temperature sensor.
- Note 1.6-5: This pin (BS1) is for 3-line SPI or 4-line SPI selection. When it is "Low", 4-line SPI is selected. When it is "High", 3-line SPI (9 bits SPI) is selected.

2. COMMAND TABLE

-			ble			1.2.1		-							
-	10.00000	Hex		D6	D5	D4	D3	D2	D1	DO	Command	Descripti			
0	0	01	0	0	0	0	0	0	0	1	Driver Output control	Gate setti			
0	1		A7	A6	As	A	A ₃	A ₂	A ₁	Ao		A[8:0]= 12 MUX Gate			
0	1		0	0	0	0	0	0	0	As		WOX Gate	a innes se	uny as (A	[0.0] + 1)
0	1		0	0 0	0	0	000	0 B2	0 B1	Aa Bo		B [2:0] = 0 Gate scar B[2]: GD Selects th GD=0 [PC G0 is the output sec GD=1, G1 is the output sec B[1]: SM Change si SM=0 [PC G0, G1, G interlaced SM=1,	000 [POR nning seq e 1st outp DR], 1st gate o quence is canning o DR], 32, G32]. uence and out Gate output chai G0,G1, G output chai G1, G0, C order of ga	I direction 2, G3, nnel, gatu 33, G2, te driver. id right gi
												B[0]: TB TB = 0 [P0	OR], scar	from G0	
												B[0]: TB	OR], scar	from G0	to G295
0	0	03	0	0	0	0	0	0	1	1	Gate Driving voltage	B[0]: TB TB = 0 [P0 TB = 1, so	OR], scar can from (n from G0 G295 to G	to G295
0	0	03	0	0	0			2.			Gate Driving voltage	B[0]: TB TB = 0 [P0 TB = 1, so Set Gate 0 A[4:0] = 0	OR], scar can from (driving vo 0h [POR]	from G0 G295 to G	to G295 0.
2	2	03			1000	0 A4	0 A3	0 A2	1 A1	1 A0		B[0]: TB TB = 0 [P0 TB = 1, so	OR], scar can from (driving vo 0h [POR]	from G0 G295 to G	to G295 0.
2	2	03			1000			2.				B[0]: TB TB = 0 [P0 TB = 1, sc A[4:0] = 0 VGH setti A[4:0]	OR], scar can from (driving vo 0h [POR] ng from 1 VGH	n from G0 G295 to G Itage 0V to 20V A[4:0]	to G295 0. VGH
2	2	03			1000			2.				B[0]: TB TB = 0 [P0 TB = 1, sc A[4:0] = 0 VGH setti A[4:0] 00h	OR], scar can from 0 driving vo 0h [POR] ng from 1 VGH 20	of from G0 G295 to G Itage OV to 20V A[4:0] ODh	to G295 0. VGH 15
1.2	2	03			1000			2.				B[0]: TB TB = 0 [P0 TB = 1, sc A[4:0] = 0 VGH setti A[4:0]	OR], scar can from (driving vo 0h [POR] ng from 1 VGH	n from G0 G295 to G Itage 0V to 20V A[4:0]	to G295 0. VGH
1.2	2	03			1000			2.				B[0]: TB TB = 0 [P0 TB = 1, sc A[4:0] = 0 VGH setti A[4:0] 00h	OR], scar can from 0 driving vo 0h [POR] ng from 1 VGH 20	of from G0 G295 to G Itage OV to 20V A[4:0] ODh	to G295 0. VGH 15
1.2	2	03			1000			2.				B[0]: TB TB = 0 [P0 TB = 1, so Set Gate 0 A[4:0] = 0 VGH setti A[4:0] 00h 03h	OR], scar can from 0 driving vo 0h [POR] ng from 1 VGH 20 10	of from G0 G295 to G Itage 0V to 20V A[4:0] 0Dh 0Eh	to G295 0. VGH 15 15.5
2	2	03			1000			2.				B[0]: TB TB = 0 [P0 TB = 1, so Set Gate 0 A[4:0] = 0 VGH setti A[4:0] 00h 03h 04h	OR], scar can from 0 driving vo 0h [POR] ng from 1 VGH 20 10 10.5	of from G0 G295 to G Itage 0V to 20V A[4:0] 0Dh 0Eh 0Fh	VGH 15 16
2	2	03			1000			2.				B[0]: TB TB = 0 [P0 TB = 1, so A[4:0] = 0 VGH setti A[4:0] 00h 03h 04h 05h	OR], scar can from 0 driving vo 0h [POR] ng from 1 VGH 20 10 10.5 11 11.5	1 from G0 G295 to G Itage 0V to 20V A[4:0] 0Dh 0Eh 0Fh 10h 11h	VGH 15 15.5 16 16.5 17
-	2	03			1000			2.				B[0]: TB TB = 0 [P0 TB = 1, so A[4:0] = 0 VGH setti A[4:0] 00h 03h 04h 05h 06h 07h	OR], scar can from 0 driving vo 0h [POR] ng from 1 VGH 20 10 10.5 11 11.5 12	a from G0 G295 to G Itage 0V to 20V A[4:0] 0Dh 0Eh 0Fh 10h 11h 12h	VGH 15 15.5 16 16.5 17 17.5
	2	03			1000			2.				B[0]: TB TB = 0 [P0 TB = 1, sc A[4:0] = 0 VGH setti A[4:0] 00h 03h 04h 05h 06h 07h 08h	OR], scar can from 0 driving vo 0h [POR] ng from 1 VGH 20 10 10.5 11 11.5 12 12.5	a from G0 G295 to G Itage 0V to 20V A[4:0] 0Dh 0Eh 0Fh 10h 11h 12h 13h	VGH 15 15.5 16 16.5 17 17.5 18
	2	03			1000			2.				B[0]: TB TB = 0 [P0 TB = 1, sc A[4:0] = 0 VGH setti A[4:0] 00h 03h 04h 05h 06h 07h 08h 07h	OR], scar can from 0 driving vo 0h [POR] ng from 1 VGH 20 10 10.5 11 11.5 12 12.5 12	a from G0 G295 to G Itage OV to 20V A(4:0] ODh OEh OFh 10h 11h 12h 13h 14h	VGH 15 15.5 16 16.5 17 17.5 18 18.5
2	2	03			1000			2.				B[0]: TB TB = 0 [P0 TB = 1, sc A[4:0] = 0 VGH setti A[4:0] 00h 03h 04h 05h 06h 07h 08h 07h 08h	OR], scar can from 0 0h [POR] ng from 1 VGH 20 10 10.5 11 11.5 12 12.5 12 12.5	a from G0 G295 to G Itage 0V to 20V A[4:0] 0Dh 0Eh 0Fh 10h 11h 12h 13h 14h 15h	VGH 15 15.5 16 16.5 17 17.5 18 18.5 19
1.2	2	03			1000			2.				B[0]: TB TB = 0 [P0 TB = 1, sc A[4:0] = 0 VGH setti A[4:0] 00h 03h 04h 05h 06h 07h 08h 07h 08h 07h 08h 07h	OR], scar can from 0 0h [POR] ng from 1 VGH 20 10 10.5 11 11.5 12 12.5 12 12.5 13	a from G0 G295 to G Itage 0V to 20V A[4:0] 0Dh 0Eh 0Fh 10h 11h 12h 13h 14h 15h 16h	VGH 15 15.5 16 16.5 17 17.5 18 18.5 19 19.5
100	2	03			1000			2.				B[0]: TB TB = 0 [P0 TB = 1, so A[4:0] = 0 VGH setti A[4:0] 00h 03h 04h 05h 06h 07h 08h 07h 08h 07h 08h 07h	OR], scar can from 0 0h [POR] ng from 1 VGH 20 10 10.5 11 11.5 12 12.5 12 12.5 12 12.5 13 13.5	a from G0 G295 to G Itage 0V to 20V A[4:0] 0Dh 0Eh 0Fh 10h 11h 12h 13h 14h 15h 16h 17h	VGH 15 15.5 16 16.5 17 17.5 18 18.5 19 19.5 20
100	2	03			1000			2.				B[0]: TB TB = 0 [P0 TB = 1, sc A[4:0] = 0 VGH setti A[4:0] 00h 03h 04h 05h 06h 07h 08h 07h 08h 07h 08h 07h	OR], scar can from 0 0h [POR] ng from 1 VGH 20 10 10.5 11 11.5 12 12.5 12 12.5 13	a from G0 G295 to G Itage 0V to 20V A[4:0] 0Dh 0Eh 0Fh 10h 11h 12h 13h 14h 15h 16h	VGH 15 15.5 16 16.5 17 17.5 18 18.5 19 19.5

/W#	D/C#	d Tal Hex	D7	D6	D5	D4	D3	D2	D1	DO	Comm	nand		Description
0	0	04	0	0	0	0	0	1	0	0	A CONTRACTOR	Driving	voltage	Set Source driving voltage
0	1	04	A7	As	As	A	A3	A ₂	A ₁	Ao	Contro		ronage	A[7:0] = 41h [POR], VSH1 at 15V
-			-	-	-	-	-	-	-	-				B[7:0] = A8h [POR], VSH2 at 5V.
0	1		B ₇	Be	Bo	B ₄	B ₃	B ₂	B1	B ₀				C[7:0] = 32h [POR], VSL at -15V
0	1		C7	C ₆	C ₅	C4	C ₃	C ₂	C1	C ₀				Remark: VSH1>=VSH2
	J/B[7]						an a		7]/B[7					C[7] = 0,
	H1/VS	SH2 \	/oltag	e se	tting	from	2.4V		5H1/\ 17V	/SH2	voltage	e setting	from 9V	VSL setting from -5V to -17V
_	B[7:0]	VSH	1/VSH2	A/B	3[7:0]	VSH1	VSH2	-	A/B[7:0	Vs	H1/VSH2	A/B[7:0]	VSH1/VSH	2 C[7:0] VSL
	8Eh		2.4		Fh	5	7		23h		9	3Ch	14	0Ah -5
	8Fh	-	2.5	-	SOh	-	8		24h	-	9.2	3Dh	14,2	0Ch -5.5
	90h 91h	-	2.6	<u> </u>	31h 32h		9	-	25h 26h	+	9.4	3Eh 3Fh	14.4	0Eh -6
	92h	-	2.8	-	33h		.1		27h	-	9.8	40h	14.8	10h -6.5
	93h		2.9	B	14h	6	2		28h		10	41h	15	12h -7
-	94h		3	-	55h	-	.3	F	29h		10.2	42h	15.2	14h -7.5
-	95h 96h	+	3.1		36h 37h	-	.4	-	2Ah 2Bh	-	10.4	43h 44h	15.4	16h -8
	96h 97h		3.2		38h		.6	-	20h	-	10.6	44h 45h	15.8	18h -8.5 1Ah -9
	98h	-	3.4	-	39h		7		2Dh		11	46h	16	1Ch -9.5
	99h	-	3.5	-	Ah	-	.8		2Eh		11.2	47h	16.2	1Eh -10
-	9Ah	+	3.6	-	Bh		.9 7	-	2Fh	-	11.4	48h	16.4	20h -10.5
	9Bh 9Ch	-	3.7 3.8		ICh IDh		.1	-	30h 31h	+	11.6	49h 4Ah	16.6 16.8	22h -11
-	9Dh		1.9		Eh		2		32h		12	4Bh	17	24h -11.5
. 3	9Eh		4	B	SFh	_	3		33h		12.2	Other	NA	26h -12
-	9Fh		4.1	-	:0h		.4		34h	-	12.4		00.00	28h -12.5
	Ath	+	4.2	-	C1h	-	.5	-	35h	-	12.6			2Ah -13
	A1h A2h		4.3	-	2h 3h		.6		36h 37h	-	12.8			2Ch -13.5
	A3h		1.5	-	:4h		.8		38h		13.2			2Eh -14
	A4h		4.6	C	Cốh		.9		39h		13.4			30h -14.5 32h -15
_	A5h		4,7	-	26h		8	-	3Ah	-	13.6		_	32h -15 34h -15.5
	A6h A7h		4.8	-	27h 28h		1	-	3Bh		13.8			36h -16
	A8h	1	5	-	39h	-	3							38h -16.5
8	A9h		5.1	C	Ah	8	4							3Ah -17
	AAh	-	5.2	-	Bh	-	.5							Other NA
-	ABh	+	5.3	-	Ch	-	6							
	ACh ADh	+	5.4	<u> </u>	Dh Eh	_	.7							
	AEh	-	5.6		ther		A							
-	0	08	0	0	0	0	1	0	0	0	Initial	Code Set	ting	Program Initial Code Setting
0	0	00	0	0	0	0		U	0	0		rogram	ung	riogram milital code Setting
0											011 1			
0											1999.00	rogram		The command required CLKEN=1
0											1992.00000	rogram		The command required CLKEN=1. Refer to Register 0x22 for detail.
0											1942-0	rogram		Refer to Register 0x22 for detail.
0												rogram		
														Refer to Register 0x22 for detail. BUSY pad will output high during operation.
0	0	09	0	0	0	0	1	0	0	1		Register	or Initial	Refer to Register 0x22 for detail. BUSY pad will output high during operation. Write Register for Initial Code Setting
0	0	09	0 A7	0 As	0 As	0 A4	1 A3	0 A2	0 A1	1 Ao			or Initial	Refer to Register 0x22 for detail. BUSY pad will output high during operation. Write Register for Initial Code Setting Selection
0	-	09	-		-				-			Register	or Initial	Refer to Register 0x22 for detail. BUSY pad will output high during operation. Write Register for Initial Code Setting Selection A[7:0] ~ D[7:0]: Reserved
0 0 0	1	09	A7 B7	A ₆ B ₆	As Bs	A4 B4	A3 B3	A ₂ B ₂	A1 B1	Ao Bo		Register	or Initial	Refer to Register 0x22 for detail. BUSY pad will output high during operation. Write Register for Initial Code Setting Selection A[7:0] ~ D[7:0]: Reserved Details refer to Application Notes of Initia
00000	1 1 1	09	A7 B7 C7	A6 B6 C6	As Bs Cs	A4 B4 C4	A3 B3 C3	A2 B2 C2	A1 B1 C1	Ao Bo Co		Register	or Initial	Refer to Register 0x22 for detail. BUSY pad will output high during operation. Write Register for Initial Code Setting Selection A[7:0] ~ D[7:0]: Reserved
0 0 0 0 0 0 0	1	09	A7 B7	A ₆ B ₆	As Bs	A4 B4	A3 B3	A ₂ B ₂	A1 B1	Ao Bo		Register	or Initial	Refer to Register 0x22 for detail. BUSY pad will output high during operation. Write Register for Initial Code Setting Selection A[7:0] ~ D[7:0]: Reserved Details refer to Application Notes of Initia
000000	1 1 1	09 0A	A7 B7 C7	A6 B6 C6	As Bs Cs	A4 B4 C4	A3 B3 C3	A2 B2 C2	A1 B1 C1	Ao Bo Co	Code	Register		Refer to Register 0x22 for detail. BUSY pad will output high during operation. Write Register for Initial Code Setting Selection A[7:0] ~ D[7:0]: Reserved Details refer to Application Notes of Initia

2.13inch E-Paper RBW

	D/C#	d Tal	D7	D6	D5	D4	D3	D2	D1	D	Command	Description	
								-	-	-			Phase 1, Phase 2 and Phase
0	0	00	0	0	0	0	1	1	0	0	and the second second second second second	for soft start current	and duration setting.
0	1		1	A ₆	A ₅	A ₄	A ₃	A ₂	-	-	1	A[7:0] -> Soft start s	etting for Phase1
0	1		1	B6	Bo	B ₄	B ₃	B ₂	-	-		= 8Bh [PO	R]
0	1		1	C ₆	C ₅	C ₄	C ₃	C ₂	-	-		B[7:0] -> Soft start s = 9Ch [PC	
0	1		0	0	D ₅	D ₄	D ₃	D ₂	D	D	D	C[7:0] -> Soft start s	etting for Phase3
												= 96h [PO D[7:0] -> Duration se	R] atting
												= 0Fh [PO	R]
												Bit Description	of each byte:
												A[6:0] / B[6:0] /	C[6:0]: Driving Strength
												Bit[6:4]	Selection
												000	1(Weakest)
												001	2
												010	3
												011	4
												100	5
								L	-			101	6
												110	7
												111	8(Strongest)
												Bit[3:0] M	lin Off Time Setting of GDR [Time unit]
												0000	1000 Control 100
												0011	NA
								L				0100	2.6
												0101	3.2
												0110	3.9
				-			- I		-			0111	4.6
												1000	5.4
-				<u> </u>			I		-			1001	6.3
_	_			I					-			1010	7.3
												1011	8.4
												1100	9.8
												1101	11.5
												1110	13.8
												1111	16.5
												D[5:4]: duratio D[3:2]: duratio	n setting of phase on setting of phase 3 on setting of phase 2 on setting of phase 1
												Bit[1:0]	Duration of Phase [Approximation]
												00	10ms
												01	20ms
												10	30ms
												11	40ms
0	0	10	0	0	0	1	0	0	0	0	Deep Sleep mode	Deep Sleep mod	1.12.20.20
0	1	10	0	0	0	0	0	0	A ₁	A	Deep oleep mode		ription
~	100			~	-		-	័				00 Norm	al Mode [POR]
												100 C	Deep Sleep Mode 1
												11 Enter	Deep Sleep Mode 2
												enter Deep Slee keep output high Remark:	ep mode, User require

the same in the local division in the local	man D/C#		and the second second	D6	D5	D4	D3	D2	D1	DO	Command	Description
0	0	11	0	0	0	1	0	0	0	1	Data Entry mode setting	Define data entry sequence
0	1		0	0	0	0	0	A2	Aı	A0		A[2:0] = 011 [POR] A [1:0] = ID[1:0] Address automatic increment / decrement setting The setting of incrementing or decrementing of the address counter car be made independently in each upper and lower bit of the address. 00 –Y decrement, X decrement, 01 –Y decrement, X decrement, 10 –Y increment, X decrement, 11 –Y increment, X increment [POR] A[2] = AM Set the direction in which the address counter is updated automatically after data are written to the RAM. AM= 0, the address counter is updated in the X direction. [POR] AM = 1, the address counter is updated in the Y direction.
0	0	12	0	0	0	1	0	0	1	0	SW RESET	It resets the commands and parameters to their S/W Reset default values except R10h-Deep Sleep Mode During operation, BUSY pad will output high. Note: RAM are unaffected by this command.
0	0	14	0	0	0	1	0	1	0	0	HV Ready Detection	HV ready detection A[7:0] = 00h [POR] The command required CLKEN=1 and ANALOGEN=1. Refer to Register 0x22 for detail. After this command initiated, HV Ready detection starts. BUSY pad will output high during detection. The detection result can be read from the Status Bit Read (Command 0x2F).
0	1		0	As	As	A	0	A ₂	Aı	Ao		A[6:4]=n for cool down duration: 10ms x (n+1) A[2:0]=m for number of Cool Down Loop to detect. The max HV ready duration is 10ms x (n+1) x (m) HV ready detection will be trigger after each cool down time. The detection will be completed when HV is ready. For 1 shot HV ready detection, A[7:0] can be set as 00h.

	man D/C#			D6	D5	D4	D3	D2	D1	DO	Command	Description		
							10000	100000				-		
0	0	15	0	0	0	1	0	1 A2	0 A1	1 Ao	VCI Detection	VCI Detection A[2:0] = 100 [POR A[2:0] : VCI level [l at 2.3V
												A[2:0]	VCI level	1
												011	2.2V	
												100	2.3V	-
												101	2.4V	-
												110	2.4V	-
												111		-
												and the second sec	2.6V	-
												Other	NA	10
												The command req ANALOGEN=1 Refer to Register (After this comman detection starts. BUSY pad will out detection. The detection resu Status Bit Read (C	0x22 for detail. d initiated, VC put high during ilt can be read	l g from the
0	0	18	0	0	0	1	1	0	0	0	Temperature Sensor	Temperature Sens	or Selection	
0	1		A7	As	As	A4	A3	A2	At	Ao	Control	A[7:0] = 48h [POR		
~	8		n,	10	10	1.04	~	ne -		~		temperatrure sens		
_												A[7:0] = 80h Intern	al temperature	e sensor
0	0	1A	0	0	0	1	1	0	1	0	Temperature Sensor	Write to temperatu		
0	1		A7	As	As	A4	A3	A ₂	A1	Ao	Control (Write to	A[7:0] = 7Fh [POR]	
											temperature register)			
0	0	1B	0	0	0	1	1	0	1	1	Temperature Sensor	Read from temper	ature register	
1	1		A7	As	As	A	A3	A2	A	Ao	Control (Read from	in total in the inperior	atare register.	
1	1	-	N	10	10	A	ns	n2	~	~	temperature register)			
0	0	1C	0	0	0	1	1	1	0	0	Temperature Sensor	Write Command to	External temp	perature
0	1		A ₇	As	As	A4	A3	A ₂	A1	A	Control (Write Command	sensor.		
0	1		B7	Be	B5	B4	Ba	B ₂	B1	Bo	to External temperature	A[7:0] = 00h [POR]		
0	1		C7	Ce	C ₅	C4	C ₃	C ₂	C1	Co	sensor)	B[7:0] = 00h [POR C[7:0] = 00h [POR		
	<u> </u>		0.	00		04	0.	02	0,	00		C[1.0] - OUI [FOR		
												A[7:6]		
												provide white reaction of the second s	byte to be sent	
												00 Address + p		
													ointer + 1st param ointer + 1st param	
												10 2nd pointer	unter + ist paran	Inter +
												11 Address		
												A[5:0] - Pointer Se		
												B[7:0] - 1st parame		
												C[7:0] - 2nd param		
												The command requerted Refer to Register 0		1.
												After this command		
												Command to exter		
												sensor starts. BUS	Y pad will outp	out high
												during operation.		

	man	and an interest of	and the other designs of the	10000	T MAXAGE	Contract I	1.6007		2 205 1	-	1	1
WW#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	DO	Command	Description
0	0	20	0	0	1	0	0	0	0	0	Master Activation	Activate Display Update Sequence The Display Update Sequence Option located at R22h. BUSY pad will output high during operation. User should not interrupt th operation to avoid corruption of panel images.
0	0	21	0	0	1	0	0	0	0	1	Display Update Control	RAM content option for Display Updat
0	1		A7	As	As	A4	A3	A2	A	Ao	1	A[7:0] = 00h [POR] B[7:0] = 00h [POR]
0	1		Bı	0	0	0	0	0	0	0		A[7:4] Red RAM option 0000 Normal 0100 Bypass RAM content as 1000 Inverse RAM content A[3:0] BW RAM option 0000 0000 Normal 0100 Bypass RAM content A[3:0] BW RAM option 0000 0000 Normal 0100 Bypass RAM content as 1000 Inverse RAM content B[7] Source Output Mode 0 0 Available Source from S0 to S1 1 Available Source from S8 to S1
0	0	24	0	0	1	0	0	1	0	0	Write RAM (Black White) / RAM 0x24	After this command, data entries will b written into the BW RAM until another command is written. Address pointers advance accordingly For Write pixel: Content of Write RAM(BW) = 1 For Black pixel: Content of Write RAM(BW) = 0

Command Table

0	and the second								DO	Command	Description	
1	22	0 A7	0 As	1 As	0 A4	0 A3	0 A2	1 A1	0 Ao	Display Update Control 2	Display Update Sequence Option: Enable the stage for Master Activation	on
											Operating sequence Para	meter Hex)
											Enable clock signal	80
											Disable clock signal	01
											Enable clock signal	C0
											Disable Analog	03
											→ Disable clock signal	
											Enable clock signal → Load LUT with DISPLAY Mode 1 → Disable clock signal	91
											Enable clock signal → Load LUT with DISPLAY Mode 2 → Disable clock signal	99
											Eachle clack sizes!	
											Load temperature value Load LUT with DISPLAY Mode 1	B1
											Enable clock signal	
											→ Load temperature value → Load LUT with DISPLAY Mode 2 → Disable clock signal	89
											Enable clock signal → Enable Analog → Display with DISPLAY Mode 1 → Disable Analog → Disable OSC	C7
											Enable clock signal → Enable Analog → Display with DISPLAY Mode 2 → Disable Analog → Disable OSC	CF
											Enable clock signal → Enable Analog → Load temperature value → DISPLAY with DISPLAY Mode 1 → Disable Analog → Disable OSC	F7
											Enable clock signal → Enable Analog → Load temperature value → DISPLAY with DISPLAY Mode 2 → Disable Analog → Disable OSC	FF
0	26	0	0	1	0	0	1	1	0	Write RAM (RED) / RAM 0x26	After this command, data entries will written into the RED RAM until anoth command is written. Address pointer advance accordingly.	her
						×					For Red pixel: Content of Write RAM(RED) = 1 For non-Red pixel [Black or White]: Content of Write RAM(RED) = 0	
0	27	0	0	1	0	0	1	1	1	Read RAM	After this command, data read on th MCU bus will fetch data from RAM. According to parameter of Register to select reading RAM0x24/ RAM0x until another command is written. Address pointers will advance accordingly.	41h
											/ RAM 0x26	0 26 0 0 1 0 1 1 1 1 1 0 27 0 0 1 0 1 1 1 1 1 0 27 0 0 1 0 1 1 1 1 1 0 27 0 0 1 1 1 1 1 1 0 27 0 0 1 1 1 1 1 0 27 0 0 1 1 1 1 1 10 27 0 0 1 1 1 1 1 10 27 0 0 1 1 1 1 1 10 27 0 0 1 1 1 1 1

1/W#		T							Land Service		I State State State State			
	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	DO	Command	Description		
0	0	28	0	0	1	0	1	0	0	0	VCOM Sense	Enter VCOM s for duration de VCOM value. The sensed VO register The command ANALOGEN=1 Refer to Regist BUSY pad will operation.	fined in 29h COM voltage required CL ter 0x22 for 0	before reading is stored in KEN=1 and detail.
0	0	29	0	0	1	0	4	0	0	1	VCOM Sense Duration	Stabling time b	chucan anta	ring VCOM
-	1	29		1	0	0	1				VCOM Sense Duration	Stabling time b sensing mode		
0	1		0		0	0	A ₃	A2	A	Ao		A[3:0] = 9h, du VCOM sense o	ration = 10s	
0	0	2A	0	0	1	0	1	0	1	0	Program VCOM OTP	Program VCO	A register in	to OTP
												The command		
												The command Refer to Regist BUSY pad will operation.	er 0x22 for	detail.
0	0	2C	0	0	1	0	1	1	0	0	Write VCOM register	Refer to Regist BUSY pad will operation. Write VCOM re	output high	detail. during
0	0	2C	0 A7	0 As	1 A5	0 A4	1 A3	1 A2	0 At	0 A0	Write VCOM register	Refer to Regist BUSY pad will operation.	output high	detail. during
-		2C	-		-	-	-	-	-	-	Write VCOM register	Refer to Regist BUSY pad will operation. Write VCOM re A[7:0] = 00h [P	output high gister from N OR]	detail. during MCU interface
-		2C	-		-	-	-	-	-	-	Write VCOM register	Refer to Regist BUSY pad will operation. Write VCOM re A[7:0] = 00h [P A[7:0] VCO	output high gister from M OR] M A[7:0]	detail. during MCU interface VCOM
-		2C	-		-	-	-	-	-	-	Write VCOM register	Refer to Regist BUSY pad will operation. Write VCOM re A[7:0] = 00h [P A[7:0] VCO 08h -0.1	output high gister from M OR] M A[7:0] 2 44h	detail. during MCU interface VCOM -1.7
-		2C	-		-	-	-	-	-	-	Write VCOM register	Refer to Regist BUSY pad will operation. Write VCOM re A[7:0] = 00h [P A[7:0] VCC 08h -0.1 0Ch -0.3	gister from MOR] MA[7:0] A[7:0] A[44h A[48h	detail. during MCU interface VCOM -1.7 -1.8
-		2C	-		-	-	-	-	-	-	Write VCOM register	Refer to Regist BUSY pad will operation. Write VCOM re A[7:0] = 00h [P A[7:0] VCC 08h -0.3 0Ch -0.4 10h -0.4	er 0x22 for output high gister from N OR] M A[7:0] 2 44h 3 48h 4 4Ch	detail. during MCU interface VCOM -1.7 -1.8 -1.9
-		2C	-		-	-	-	-	-	-	Write VCOM register	Refer to Regist BUSY pad will operation. Write VCOM re A[7:0] = 00h [P A[7:0] VCO 08h -0.1 0Ch -0.3 10h -0.4 14h -0.5	output high gister from N OR] M A[7:0] 2 44h 3 48h 4 4Ch 5 50h	detail. during MCU interface VCOM -1.7 -1.8 -1.9 -2
-		2C	-		-	-	-	-	-	-	Write VCOM register	Refer to Regist BUSY pad will operation. Write VCOM re A[7:0] = 00h [P A[7:0] VCO 08h -0.1 0Ch 10h -0.4 18h	Alpha Alpha 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	detail. during MCU interface VCOM -1.7 -1.8 -1.9 -2 -2.1
-		2C	-		-	-	-	-	-	-	Write VCOM register	Refer to Regist BUSY pad will operation. Write VCOM re A[7:0] = 00h [P A[7:0] VCO 08h -0.1 0Ch -0.3 10h -0.4 14h -0.5	Alpha Alpha 0 M Alpha 0 M Alpha 0 M Alpha 0 Alpha 48h 4 4Ch 5 5 50h 54h 7 58h 58h	detail. during MCU interface VCOM -1.7 -1.8 -1.9 -2 -2.1 -2.1 -2.2
-		2C	-		-	-	-	-	-	-	Write VCOM register	Refer to Regist BUSY pad will operation. Write VCOM re A[7:0] = 00h [P A[7:0] VCO 08h -0.3 0Ch -0.3 10h -0.4 14h -0.5 18h -0.6 1Ch -0.3 20h -0.5	Alpha Alpha 0 M Alf7:0] 0 44h 48h 4 4Ch 5 5 50h 54h 7 58h 3 3 5Ch 5Ch	detail. during MCU interface <u>VCOM</u> -1.7 -1.8 -1.9 -2 -2.1 -2.1 -2.2 -2.3
-		2C	-		-	-	-	-	-	-	Write VCOM register	Refer to Regist BUSY pad will operation. Write VCOM re A[7:0] = 00h [P A[7:0] = 00h [P A[7:0] VCO 08h -0.1 0Ch -0.3 10h -0.4 14h -0.5 18h -0.6 1Ch -0.7 20h -0.8 24h -0.5	Alpha Alpha 0 M Alf7:0] 0 44h 42h 3 48h 42h 4 42h 50h 5 50h 54h 7 58h 3 3 5Ch 60h	detail. during MCU interface VCOM -1.7 -1.8 -1.9 -2 -2.1 -2.2 -2.3 -2.3 -2.4
-		2C	-		-	-	-	-	-	-	Write VCOM register	Refer to Regist BUSY pad will operation. Write VCOM re A[7:0] = 00h [P A[7:0] = 00h [P A[7:0] VCC 08h 0Ch 0Ch 10h 10h 12h 18h 10h 20h 28h -1	Alpha Alpha gister from NOR] M M A[7:0] 2 44h 3 48h 4 4Ch 5 50h 5 54h 7 58h 3 5Ch 9 60h 64h	detail. during MCU interface VCOM -1.7 -1.8 -1.9 -2 -2.1 -2.2 -2.3 -2.4 -2.5
-		2C	-		-	-	-	-	-	-	Write VCOM register	Refer to Regist BUSY pad will operation. Write VCOM re A[7:0] = 00h [P A[7:0] = 00h [P A[7:0] VCC 08h -0.3 0Ch -0.3 10h -0.4 14h -0.5 18h -0.6 1Ch -0.3 20h -0.4 28h -1 2Ch -1.3	Alpha Alpha gister from NOR] M M A[7:0] 2 44h 3 48h 4 4Ch 5 50h 5 54h 7 58h 3 5Ch 9 60h 64h 68h	detail. during MCU interface VCOM -1.7 -1.8 -1.9 -2 -2.1 -2.1 -2.2 -2.3 -2.4 -2.5 -2.6
-		2C	-		-	-	-	-	-	-	Write VCOM register	Refer to Regist BUSY pad will operation. Write VCOM re A[7:0] = 00h [P A[7:0] VCO 08h -0.3 0Ch -0.3 10h -0.4 14h -0.3 18h -0.6 1Ch -0.3 20h -0.4 24h -0.5 28h -1 30h -1.3	Alpha Alpha gister from NOR] M M A[7:0] 2 44h 3 48h 4 4Ch 5 50h 5 54h 7 58h 3 5Ch 9 60h 64h 68h 2 6Ch	detail. during MCU interface VCOM -1.7 -1.8 -1.9 -2 -2.1 -2.2 -2.1 -2.2 -2.3 -2.4 -2.5 -2.6 -2.7
-		2C	-		-	-	-	-	-	-	Write VCOM register	Refer to Regist BUSY pad will operation. Write VCOM re A[7:0] = 00h [P A[7:0] = 00h [P A[7:0] VCC 08h -0.1 0Ch -0.3 10h -0.4 14h -0.5 18h -0.6 1Ch -0.3 20h -0.4 24h -0.5 28h -1 2Ch -1.1 30h -1.1 34h -1.5	Alter 0x22 for 0 output high gister from NOR] M A[7:0] 2 44h 3 48h 4 4Ch 5 50h 5 54h 7 58h 3 5Ch 9 60h 64h 68h 2 6Ch 3 70h	detail. during MCU interface VCOM -1.7 -1.8 -1.9 -2 -2.1 -2.2 -2.1 -2.2 -2.3 -2.4 -2.5 -2.6 -2.7 -2.8
-		2C	-		-	-	-	-	-	-	Write VCOM register	Refer to Regist BUSY pad will operation. Write VCOM re A[7:0] = 00h [P A[7:0] VCO 08h -0.3 0Ch -0.3 10h -0.4 14h -0.3 18h -0.6 1Ch -0.3 20h -0.4 24h -0.5 28h -1 30h -1.3	Alpha gister from NOR] M A[7:0] 2 44h 3 48h 4 4Ch 5 50h 5 54h 7 58h 3 5Ch 9 60h 64h 68h 2 6Ch 3 70h 4 74h	detail. during MCU interface VCOM -1.7 -1.8 -1.9 -2 -2.1 -2.2 -2.1 -2.2 -2.3 -2.4 -2.5 -2.6 -2.7

and the second second	man D/C#	And and a state of the state of	and the local division of the local divisio division of the local division of the local	D6	D5	D4	D3	D2	D1	DO	Command	Description
0	0	2D	0	0	1	0	1	1	0	1	OTP Register Read for	Read Register for Display Option:
1	1	20	A7	As	As	A4	A3	A2	A	Ao	Display Option	Read Register for Display Option.
1	1		B7	Be	Bs	B4	B ₃	B ₂	Bi	Bo		A[7:0]: VCOM OTP Selection
1	1		C7	Ce	C ₅	C4	C ₃	C ₂	Ct	Co	-	(Command 0x37, Byte A)
1	1		D7	De	Ds	D4	Da	D ₂	Di	Do	-	B[7:0]: VCOM Register
1	1		E7	E6	Es	E4	E ₃	E ₂	E	Eo		(Command 0x2C)
1	1		F7	F6	Fs	F ₄	F ₃	F ₂	Ft	Fo	-	C[7:0]~G[7:0]: Display Mode
1	1		G7	Ge	G ₅	G4	G ₃	G ₂	G1	Go	-	(Command 0x37, Byte B to Byte F)
1	1		Hz	He	Hs	H ₄	H ₃	H ₂	H	Ho	-	[5 bytes]
1	1		17	16	ls	14	13	12	11	lo		HIT:01-KIT:01: Wayeform Version
1	1		J7	Je	J ₅	J4	J ₃	J ₂	J1	Jo	1	H[7:0]~K[7:0]: Waveform Version (Command 0x37, Byte G to Byte J)
1	1		K ₇	Ke	K ₅	K4	K ₃	K ₂	K1	Ko		[4 bytes]
						1.4.652				10015		
0	0	2E	0	0	1	0	1	1	1	0	User ID Read	Read 10 Byte User ID stored in OTP:
1	1		A ₇	As	A ₅	A4	A ₃	A ₂	A ₁	A ₀]	A[7:0]]~J[7:0]: UserID (R38, Byte A and
1	1		B ₇	B6	B ₅	B ₄	B ₃	B ₂	B ₁	B ₀		Byte J) [10 bytes]
1	1		C7	C ₆	C ₅	C4	C ₃	C ₂	C1	C ₀]	
1	1		D7	D ₆	Ds	D ₄	D ₃	D ₂	D1	D ₀]	
1	1		E ₇	E ₆	E ₅	E4	E ₃	E ₂	E1	E ₀]	
1	1		F ₇	F ₆	F ₅	F ₄	F ₃	F ₂	F ₁	Fo		
1	1		G7	G ₆	Gs	G4	G ₃	G ₂	G1	G ₀		
1	1		H ₇	H ₆	Ho	H ₄	H ₃	H ₂	H ₁	H ₀		
1	1		17	16	15	14	13	12	11	lo		
1	1		J7	Je	J5	J4	J ₃	J ₂	J1	Jo		
0	0	2F	0	0	1	0	1	1	1	1	Status Bit Read	Read IC status Bit [POR 0x01]
1	1		0	0	As	A4	0	0	Aı	Ao		A[5]: HV Ready Detection flag [POR=0] 0: Ready 1: Not Ready A[4]: VCI Detection flag [POR=0] 0: Normal 1: VCI lower than the Detect level A[3]: [POR=0] A[2]: Busy flag [POR=0] 0: Normal 1: BUSY A[1:0]: Chip ID [POR=01] Remark: A[5] and A[4] status are not valid after RESET, they need to be initiated by command 0x14 and command 0x15 respectively.
0	0	30	0	0	1	1	0	0	0	0	Program WS OTP	Program OTP of Waveform Setting The contents should be written into RAM before sending this command. The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.

_		d Ta Hex		D6	DS	D4	D3	D2	D1	DO	Command	Description
		1. COURS	1000	12020	1000	1000	10000	1146544	77.00	20		
0	0	31	0	0	1	1	0	0	0	1	Load WS OTP	Load OTP of Waveform Setting The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.
0	0	32	0	0	1	1	0	0	1	0	Write LUT register	Write LUT register from MCU interface
0	1	02	Az	As	As	A4	A	A ₂	A	Ao	This Lot register	[227 bytes], which contains the content of
0	1	-	B7	Be	Bs	B4	Ba	B2	Bt	Bo	-	VS[nX-LUTm], TP[nX], RP[n], SR[nXY],
0	1		:	:	:	:	:	:	:	:		FR and XON[nXY] Refer to Session 6.7 WAVEFORM
0	1		×		•	*						SETTING
0	0	34	0	0	1	1	0	1	0	0	CRC calculation	CRC calculation command For details, please refer to SSD1680A application note. BUSY pad will output high during operation.
0	0	35	0	0	1	1	0	1	0	1	CRC Status Read	CRC Status Read
1	1		A15	A14	A13	A12	1.1	A10	Ae	As		A[15:0] is the CRC read out value
1	1		A7	As	As	A	Aa	A2	A	Ao		
0	0	36	0	0	1	1	0	1	1	0	Program OTP selection	Program OTP Selection according to the OTP Selection Control [R37h and R38h] The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.
0	0	37	0	0	1	1	0	1	1	1	Write Register for Display	Write Register for Display Option
0	1	01	A7	0	0	0	0	0	0	0	Option	A[7] Spare VCOM OTP selection
0	1		B ₇	Be	Bs	B ₄	B3	B ₂	Bt	B ₀		0: Default [POR]
0	1		C7	C ₆	C5	C4	C3	C2	Ci	Co		1: Spare
0	1		D ₇	De	D ₅	D4	D ₃	D ₂	Dı	Do	1	B[7:0] Display Mode for WS[7:0]
0	1		E7	E ₆	Es	E4	E ₃	E ₂	E1	E ₀		C[7:0] Display Mode for WS[15:8]
0	1		0	F6	0	0	F3	F2	F1	Fo	1	D[7:0] Display Mode for WS[23:16] 0: Display Mode 1
0	1		G7	G ₆	G ₅	G4	G ₃	G ₂	G1	G ₀	1	1: Display Mode 2
0	1		Hz	He	H ₅	H ₄	Ha	H ₂	H1	Ho		EIGh Ding Dong for Display Made 2
0	1		17	16	15	14	13	12	11	lo]	F[6]: Ping-Pong for Display Mode 2 0: RAM Ping-Pong disable [POR]
0	1		J7	J	J5	Ja	J3	J2	Jı	Jo		1: RAM Ping-Pong enable G[7:0]~J[7:0] module ID /waveform version. Remarks: 1) A[7:0]~J[7:0] can be stored in OTP 2) RAM Ping-Pong function is not support for Display Mode 1

	man D/C#	and the second second	D7	D6	DS	D4	D3	D2	D1	DO	Command	Description	F
0	0	38	0	0	1	1	1	0	0	0	Write Register for User ID		
0	1	30	Az	As	As	A	A3	A ₂	A	Ao			:0]: UserID [10 bytes]
0	1	-	B7	Be	Bs	B ₄	B ₃	B ₂	Bi	Bo	-		
			_	-	-	-	-	-		-	-	Contraction of the second s	[7:0]~J[7:0] can be stored in
0	1		C7	C ₆	C5	C4	C ₃	C ₂	C1	Co		OTP	
0	1	_	D7	D ₆	D ₅	D ₄	D ₃	D ₂	D1	D ₀	-		
0	1		E7	E6	E ₅	E4	E ₃	E ₂	E1	Eo			
0	1		F ₇	F ₆	F ₅	F ₄	F ₃	F ₂	F1	F ₀			
0	1		G7	G ₆	G ₅	G4	G ₃	G ₂	G1	G ₀			
0	1		H ₇	H ₆	H ₅	H ₄	H ₃	H ₂	H ₁	Ho			
0	1		17	le	ls	14	13	12	11	lo			
0	1		J7	J ₆	J5	J4	J ₃	Jz	J1	Jo			
_			_	_	_	_		_	_	_	1	1	
0	0	39	0	0	1	1	1	0	0	1	OTP program mode	OTP progra	
0	1		0	0	0	0	0	0	Aı	Ao		A[1:0] = 11: programmin : User is req	Normal Mode [POR] Internal generated OTP g voltage uired to EXACTLY follow th ode sequences
0	0	3C	0	0	1	1	1	1	0	0	Border Waveform Control	Select borde	er waveform for VBD
0	1		A7	As	As	A4	0	0	Aı	Ao		A[7:0] = C0h	[POR], set VBD as HIZ.
												A[7:6]	Select VBD as
												00	GS Transition,
													Defined in A[2] and A[1:0
												01	Fix Level, Defined in A[5:4]
												10	VCOM
												11[POR]	HiZ
													evel Setting for VBD
												A[5:4]	VBD level
												00	VSS
												01	VSH1
												10	VSL
												11	VSH2
												VBD Level S	; 01b: VSH1;
												A[1:0]	VBD Transition
												00	LUTO
												01	LUT1
												10	LUT2
_												11	LUT3
0	0	3F	0	0	1	1	1	1	1	1	End Option (EOPT)	Option for L	IT end
-	1	Jr	-		-	A		A2	-	1	End Option (EOPT)		hould be set for this
0	1		A7	As	A5	A4	A3	A2	A1	Ao			programmed into Waveform
												22h Norr	nal.
													rce output level keep
													ious output before power of

	man D/C#	a lot the second se	and the same in some	D6	DS	D4	D3	D2	D1	DO	Command	Descripti	on		
0.0000	0			1045577	0	0	0	0	1.000	ALC: NO					
0	1	41	0	0	0	0	0	0	0	1 A0	Read RAM Option	Read RAM Option A[0]= 0 [POR] 0 : Read RAM corresponding to RAM0x24 1 : Read RAM corresponding to RAM0x26			
	0		0				0					0			
0	0	44	0	1	0	0	0	1	0	0	Set RAM X - address Start / End position		ne start/en ddress in f		
0	1	_	0	0	A ₅	A	A ₃	A ₂	A ₁	A ₀	Start / End position		unit for RA		cuon by a
0	1		0	0	Bo	B4	B3	B ₂	B1	Bo		A[5:0]: XS	SA[5:0], XS EA[5:0], XE	Start, POF	
0	0	45	0	1	0	0	0	1	0	1	Set Ram Y- address	Specify th	ne start/en	d position	s of the
0	1		A7	As	As	A	As	A2	A ₁	Ao	Start / End position		ddress in		
0	1	-	0	0	0	0	0	0	0	As		address u	unit for RA	M	
0	1		B ₇	Be	Bs	B	B3	B ₂	B1	Bo	-	A18-01- V	SA[8:0], YS	Start DOF	- 000h
0	1		0	0	0	0	0	0	0	Ba	-		EA[8:0], YE		
0	0	46	0	1	0	0	0	1		0	Auto Write RED RAM for	Auto Write			
0	1		A7	As	As	A4	0	Az	Aı	Ao	Regular Pattern	A[6:4]: St	1st step vi ep Height, ter RAM ir	POR= 00	0
												A[6:4]	Height	A[6:4]	Height
												000	8	100	128
												001	16	101	256
												010	32	110	296
												011	64	111	NA
												Step of al	ep Width, ter RAM ir to Source	X-directi	
												A[2:0]	Width	A[2:0]	Width
				-								000	8	100	128
												001	16	101	176
												010	32	110	NA
												011	64	111	NA
												BUSY partition	d will outpu	ut high du	ring

	man	and the second second				100		-	-		Commend	Description			
	D/C#		D7	D6	D5	D4	D3	D2	D1	DO	Command	Descripti		_	
0	0	47	0 A7	A ₆	0 As	0 A4	0	1 A ₂	1 Aı	1 A ₀	Auto Write B/W RAM for Regular Pattern	A[7:0] = 0 A[7]: The A[6:4]: Ste	0h [POR] 1st step v ep Height, ter RAM ir	alue, POR POR= 00	0
												A[6:4]	Height	A[6:4]	Height
												000	8	100	128
												001	16	101	256
												010	32	110	296
												011	64	111	NA
												A[2:0]	to Source Width 8	A[2:0] 100	Width 128
												001	16	101	176
												010	32	110	NA
												011	64	111	NA
												During op high.	eration, B	USY pad	will output
0	0	4E	0	1	0	0	1	1	1	0	Set RAM X address	Make initi	al settings	for the R	AM X
0	1		0	0	A5	A4	A3	A2	A1	Ao	counter	address in A[5:0]: 00	n the addr h [POR].	ess count	er (AC)
0	0	4F	0	1	0	0	1	1	1	1	Set RAM Y address	Make initi	al settings	for the R	AM Y
0	1		A7	As	A5	A4	A3	A2	A	Ao	counter		n the addr		er (AC)
0	1		0	0	0	0	0	0	0	A ₈		A[8:0]: 00	0h [POR].		
0	0	7F	0	1	1	1	1	1	1	1	NOP	does not module. However		effect on t	

3. Environmental

3.1 HANDLING, SAFETYAND ENVIROMENTAL REQUIREMENTS

WARNING

The display glass may break when it is dropped or bumped on a hard surface. Handle with care. Should the display break, do not touch the electrophoretic material. In case of contact with electrophoretic material, wash with water and soap.

CAUTION

The display module should not be exposed to harmful gases, such as acid and alkali gases, which corrode electronic components.

Disassembling the display module can cause permanent damage and invalidate the warranty agreements.

IPA solvent can only be applied on active area and the back of a glass. For the rest part, it is not allowed.

Observe general precautions that are common to handling delicate electronic components. The glass can break and front surfaces can easily be damaged. Moreover the display is sensitive to static electricity and other rough environmental conditions.

Mounting Precautions

(1) It's recommended that you consider the mounting structure so that uneven force (ex. Twisted stress) is not applied to the module.

(2) It's recommended that you attach a transparent protective plate to the surface in order to protect the EPD. Transparent protective plate should have sufficient strength in order to resist external force.

(3) You should adopt radiation structure to satisfy the temperature specification.

(4) Acetic acid type and chlorine type materials for the cover case are not desirable because the former generates corrosive gas of attacking the PS at high temperature and the latter causes circuit break by electro-chemical reaction.

(5) Do not touch, push or rub the exposed PS with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment. Do not touch the surface of PS for bare hand or greasy cloth. (Some cosmetics deteriorate the PS)

(6) When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials like chamois soaks with petroleum benzene. Normal-hexane is recommended for cleaning the adhesives used to attach the PS. Do not use acetone, toluene and alcohol because they cause chemical damage to the PS.

(7) Wipe off saliva or water drops as soon as possible. Their long time contact with PS causes deformations and color fading.

Product specification	The data sheet contains final product specifications.
	Limiting values
Limiting values given are i	n accordance with the Absolute Maximum Rating System (IEC 134). Stress above one
or more of the limiting va	alues may cause permanent damage to the device. These are stress ratings only and
operation of the device at	these or any other conditions above those given in the Characteristics sections of the
specification is not implied	l. Exposure to limiting values for extended periods may affect device reliability.
	Application information

Where application information is given, it is advisory and dose not form part of the specification.

Product Environmental certification

ROHS

REMARK

All The specifications listed in this document are guaranteed for module only. Post-assembled operation or component(s) may impact module performance or cause unexpected effect or damage and therefore listed specifications is not warranted after any Post-assembled operation.

3.2 Reliability test

	TEST	CONDITION
1	High-Temperature Operation	T=70°C, RH=40%RH, For 240hrs
1	High-Temperature Operation	Test in white pattern
2	Low-Temperature Operation	T = -25°C for 240 hrs
		Test in white pattern
3	High-Temperature Storage	T=50°C , RH=35%RH, For 240 hrs
4	Low-Temperature Storage	$T = 0^{\circ}C$, for 240 hrs
5	High Temperature, High Humidity Operation	T=40°C, RH=80%RH, For 240hrs
6	High Temperature, High Humidity Storage	T=50°C, RH=80%RH, For 240hrs
0	High Temperature, Figh Humany Storage	Test in white pattern
7	Temperature Cycle	-25°C (30min) ~ 70°C(30min), 50 Cycle Test in white pattern
8	UV exposure Resistance	765 W/m ² for 168hrs, 40°C
		Air+/-15KV; Contact+/-8KV
		(Test finished product shell, not display only)
9	ESD Gun	Air+/-8KV; Contact+/-6KV
		(Naked EPD display, no including IC and FPC
		area) Air+/-4KV; Contact+/-2KV
		(Naked EPD display, including IC and FPC area)

Note:Put in normal temperature for 1hour after test finished, display performance is ok.

4. Electrical Characteristics

4.1 ABSOLUTE MAXIMUM RATING

Symbol	Parameter	Rating	Unit
V CI	Logic supply voltage	-0.5 to +6.0	V
V IN	Logic Input voltage	-0.5 to VCI +0.5	V
V OUT	Logic Output voltage	-0.5 to VCI +0.5	V
T OPR	Operation temperature range	0~50	°C
T STG	Storage temperature range	-25~70	°C
T STGo	Optimal Storage Temp	23 ± 2	°C
H STGo	Optimal Storage Humidity	55 ± 10	%RH

* Note: Avoid direct sunlight.

Table 4.1-1: Maximum Ratings

Note: Maximum ratings are those values beyond which damages to the device may occur. Functional operation should be restricted to the limits in the Electrical Characteristics chapter.

4.2 DC CHARACTERISTICS

The following specifications apply for: VSS=0V, VCI=3.0V, TOPR=25°C.

		Table 4.2-1: DC Chara	acteristics				
Symbol	Parameter	Test Condition	Applicable pin	Min.	Тур.	Max.	Unit
VSS	Single ground			-	0	-	V
VCI	VCI operation voltage		VCI	2.2	3.0	3.7	V
VDD	Core logic voltage		VDD	1.7	1.8	1.9	V
VIH	High level input voltage	-		0.8 VCI	-	-	V
VIL	Low level input voltage	-		-	-	0.2 VCI	V
VOH	High level output voltage	IOH = -100uA		0.9 VCI	-	-	V
VOL	Low level output voltage	IOL = 100uA			-	0.1 VCI	V
PTYP	Typical power	VCI = 3.0V			10.5		mW
PSTPY	Deep sleep mode	VCI = 3.0V			0.003		mW
lopr_VCI	Typical operating current	VCI = 3.0V		-	3.5		mA
	Full update time	25°C			3		sec
-	Fast update time	25°C			1.5		sec
	Partial update time	25°C			0.42		sec
		DC/ DC off					
Idslp VCI	Module operating current	No clock			20		uA
iusip_vci	Module operating current	No input load Ram	-	-	20		uA
		data retain					
		DC/ DC off					
John VCI	Deep sleep mode	No clock			1	5	uA
Islp_VCI	Deep sleep mode	No input load Ram	-	-	1	5	uA
		data not retain					

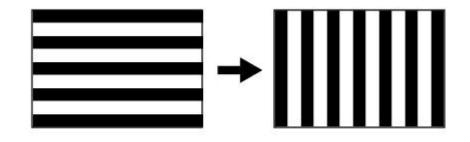
Notes:

1) Refresh time: the time it takes for the whole process from the screen change to the screen stabilization.

2) The difference between different refresh methods:

EENCO

Full refresh: The screen will flicker several times during the refresh process; Fast Refresh: The screen will flash once during the refresh process;


During the fast refresh or partial refresh of the electronic paper, it is recommended to add a full-screen refresh after 5 consecutive operations to reduce the accumulation of afterimages on the screen.

1. The typical power is measured with following transition from horizontal pattern to vertical pattern. (Note4.2-1) 2. The deep sleep power is the consumed power when the panel controller is in deep sleep mode.

3. The listed electrical/optical characteristics are only guaranteed under the controller & waveform provided by Seengreat.

Note 4.2-1

The Typical power consumption

4.3 Serial Peripheral Interface Timing

tCSHIGH Time CS# has to remain high between two transfers

The following specifications apply for: VDDIO - VSS = 2.2V to 3.7V, TOPR = 25 °C, CL=20pF

Write mode						
Symbol	Parameter	N	lin	Тур	Max	Unit
fSCL	SCL frequency (Write Mode)		-	-	20	MHz
tCSSU	Time CS# has to be low before the first rising edge of SCLK		60	-	-	ns
tCSHLD	Time CS# has to remain low after the last falling edge of SCLK		65	-	-	ns
tCSHIGH	Time CS# has to remain high between two transfers	1	00	-	-	ns
tSCLHIGH	Part of the clock period where SCL has to remain high		25	-	-	ns
tSCLLOW	Part of the clock period where SCL has to remain low		25	-	-	ns
tSISU	Time SI (SDA Write Mode) has to be stable before the next rising edge of SC	CL	10	-	-	ns
tSIHLD	Time SI (SDA Write Mode) has to remain stable after the rising edge of SCL		40	-	-	ns
Read mode		•			•	•
Symbol	Parameter	Min	T	yp 1	Max	Unit
fSCL	SCL frequency (Read Mode)	-		-	2.5	MHz
tCSSU	Time CS# has to be low before the first rising edge of SCLK	100		-	-	ns
tCSHLD	Time CS# has to remain low after the last falling edge of SCLK	50		-	-	ns

-

ns

250

-

tSOSU

2.13 inch E-Paper RBW

tSOHLD Time SO (SDA Read Mode) will remain stable after the falling edge of SCL

- 0 - ns

Note: All timings are based on 20% to 80% of VDDIO-VSS

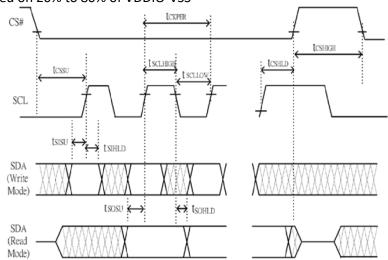


Figure 4.3-1 : Serial peripheral interface characteristics

4.4 MCU Interface

4.4-1 MCU interface selection

The 2.13inch e-paper can support 3-wire/4-wire serial peripheral interface. In the Module, the MCU interface is pin selectable by BS1 pins shown in.

BS1	MPU Interface
L	4-lines serial peripheral interface (SPI)
Н	3-lines serial peripheral interface (SPI) - 9 bits SPI

Note: L is connected to VSS and H is connected to VDDIO

4.4-2 MCU Serial Peripheral Interface (4-wire SPI)

The 4-wire serial interface consists of serial clock SCL, serial data SDA and CS#. This interface also supports Write mode and Read mode.

Table 4.4-2 : Control pins status of 4-wire SPI

Function	SCL pin	SDA pin	D/C# pin	CS# pin
Write command	↑	Command bit	L	L
Write data	1	Data bit	Н	L

Note:

 $(1)\ {\sf L}$ is connected to VSS and H is connected to VDDIO

(2) \uparrow stands for rising edge of signal

In the write mode:

SDA is shifted into an 8-bit shift register on every rising edge of SCL in the order of D7, D6, ... D0. The level of D/C# should be kept over the whole byte. The data byte in the shift register is written to the Graphic Display Data RAM (RAM)/Data Byte register or command Byte register according to D/C# pin.

In the read mode:

After driving CS# to low, MCU need to define the register to be read. SDA is shifted into an 8-bit shift register on every rising edge of SCL in the order of D7, D6, .. D0 with D/C#keep low. After SCL change to low for the last bit of register, D/C# need to drive to high. SDA is shifted out an 8-bit data on every falling edge of SCL in the order of D7, D6, .. D0. Depending on register type, more than 1 byte can be read out. After all byte are read, CS# need to drive to high to stop the read operation.

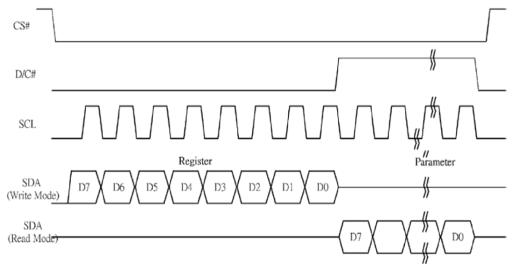


Figure 4.4-2: Read procedure in 4-wire SPI mode

4.4-3 MCU Serial Peripheral Interface (3-wire SPI)

The 3-wire serial interface consists of serial clock SCL, serial data SDA and CS#. This interface also supports Write mode and Read mode.

Functi	on	SCL pin	SDA pin	D/C# pin	CS# pin
Write	e	1	Command	Tie LOW	L
Write d	lata	↑	Data bit	Tie LOW	L

Note:

(1)L is connected to VSS and H is connected to VDDIO

(2)[†] stands for rising edge of signal

In the write operation:

There are altogether 9-bits will be shifted into the shift register on every ninth clock in sequence: D/C# bit, D7 to D0 bit. The D/C# bit (first bit of the sequential data) will determine the following data byte in the shift register is written to the Display Data RAM (D/C# bit = 1) or the command register (D/C# bit = 0).

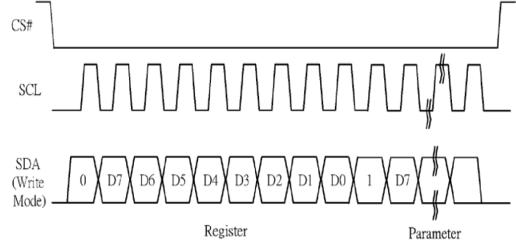


Figure 4.4-3: Write procedure in 3-wire SPI mode

In the read mode:

After driving CS# to low, MCU need to define the register to be read. D/C=0 is shifted thru SDA with one rising edge of SCL. SDA is shifted into an 8-bit shift register on every rising edge of SCL in the order of D7, D6, ... D0. D/C=1 is shifted thru SDA with one rising edge of SCL. SDA is shifted out an 8-bit data on every falling edge of SCL in the order of D7, D6, ... D0. Depending on register type, more than 1 byte can be read out. After all byte are read, CS# need to drive to high to stop the read operation.

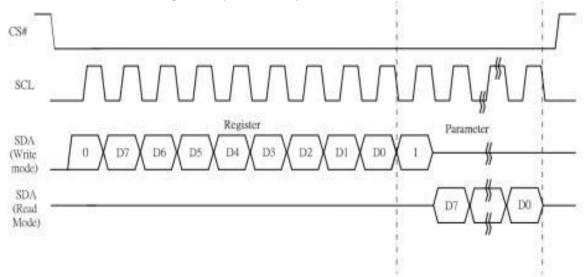
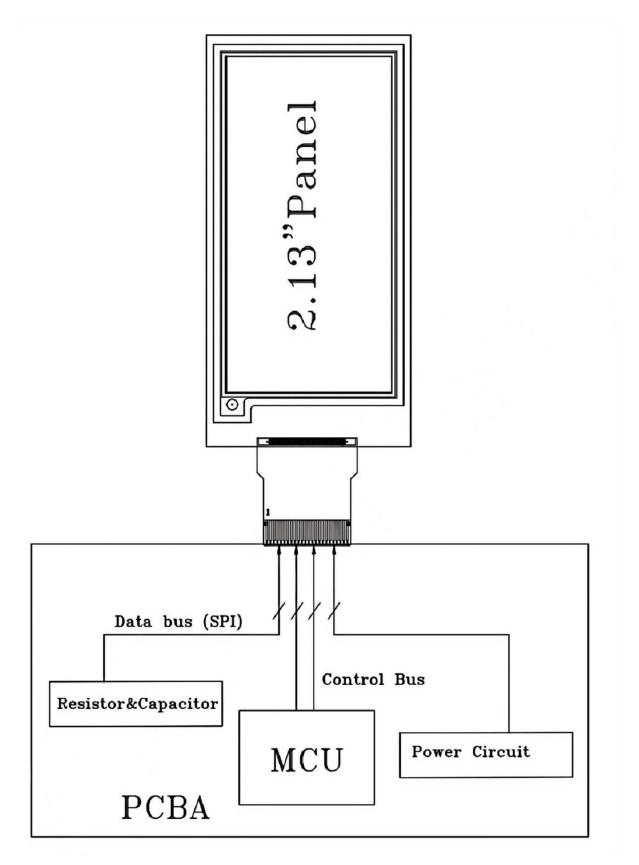
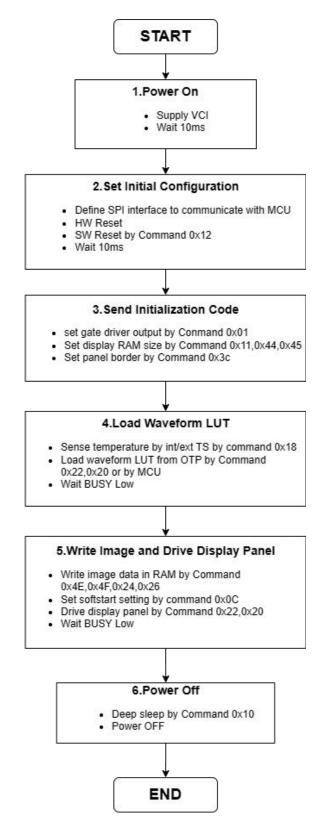



Figure 4.4-4: Read procedure in 3-wire SPI mode


4.4 Block Diagram

5. Typical Operating Sequence

5.1 General operation flow to drive display panel

6. Optical characteristics

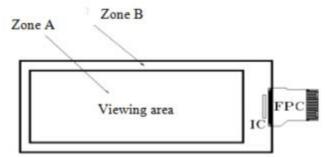
6.1 Specifications

Measurements are made with that the illumination is under an angle of 45 degrees, the detection is perpendicular unless otherwise specified.

	T=25°C						
SYMBOL	PARAMETER	CONDITIONS	MIN	ТҮРЕ	MAX	UNIT	Note
R	White	white	30	35	-	%	Note 6-1
	Reflectivity						
GN	2Grey Level	-	-	DS+(WS-DS)×n(m-1)	-		
CR	Contrast Ratio	Indoor	8:1		-	-	Note 6-2
Life	-	Topr		1000000times or 5years	-	-	

m:2

WS : White state


DS : Dark stat

Note 6-1: Luminance meter : Eye - One Pro Spectrophotometer.

Note 6-2: CR=Surface Reflectance with all white pixel/Surface Reflectance with all black pixels.

7. Point and line standard

Temperature: 25 ± 3°C; Humidity: 55 ± 10%RH; Brightness: 1200~1500LUX; distance: 20-30CM; Angle: Relate 30°surround.

7.1 Electric inspection standard

NO.	Item	Standard	Defect level	Method	Scope
1	Display	Display complete Display uniform	MA	-	
2	Black/White spots	D≤0.25mm, Allowed 0.25mm < D≤0.4mm ∘ N≤3, and Distance≥5mm 0.4mm < D Not Allow	МІ	Visual inspection	
3	Black/White spots (No switch)	L \leq 0.6mm, W \leq 0.2mm, N \leq 1 L \leq 2.0mm, W>0.2mm, Not Allow L>0.6mm, Not Allow		Visual/ Inspection card	Zone A
4	Ghost image	Allowed in switching process	MI	Visual inspection	
5	Flash spots/ Larger FPL size	Flash spots in switching, Allowed FPL size larger than viewing area, Allowed	MI	Visual/ Inspection card	Zone A Zone B
6	Display wrong/Missing	All appointed displays are showed correct	MA	Visual inspection	Zone A
7	Short circuit/ Circuit break/ Display abnormal	Not Allow			

7.2 Appearance inspection standard

NO.	Item	Standard	Defect level	Method	Scope	
1	B/W spots /Bubble/ Foreign bodies/ Dents	$\begin{array}{c c} & & & \\ & & \\ & & \\ & & \\ D = (L+W)/2 \\ D \leq 0.25 \text{mm}, \text{ Allowed} \\ 0.25 \text{mm} < D \leq 0.4 \text{mm}, \text{ N} \leq 3 \\ D > 0.4 \text{mm}, \text{ Not Allow} \end{array}$		Zone A		
2	Glass crack	Not Allow	MA	Visual		
3	Dirty	Allowed if can be removed	MI	/ Microscope	Zone A Zone B	
4	Chips/Scratch/ Edge crown	X \leq 3mm, Y \leq 0.5mmAnd without affecting the electrode is permissible $\frac{y}{\sqrt{x}}$ 2mm \leq X or 2mm \leq Y Not Allow $\frac{1}{\sqrt{x}}$ W \leq 0.1mm, L \leq 5mm, No harm to the electrodes and N \leq 2 allow	MI	Visual / Microscope	Zone A Zone B	

8. Precautions

- (1) Do not apply pressure to the EPD panel in order to prevent damaging it.
- (2) Do not connect or disconnect the interface connector while the EPD panel is in operation.
- (3) Do not touch IC bonding area. It may scratch TFT lead or damage IC function.
- (4) Please be mindful of moisture to avoid its penetration into the EPD panel, which may cause damage during operation.
- (5) If the EPD Panel / Module is not refreshed every 24 hours, a phenomena known as "Ghosting" or "Image Sticking" may occur. It is recommended to refreshed the ESL /

EPD Tag every 24 hours in use case. It is recommended that customer ships or stores the ESL / EPD Tag with a completely white image to avoid this issue

(6) High temperature, high humidity, sunlight or fluorescent light may degrade the EPD panel's performance. Please do not expose the unprotected EPD panel to high temperature, high humidity, sunlight, or fluorescent for long periods of time.