

2.7inch E-Paper

Product Specifications

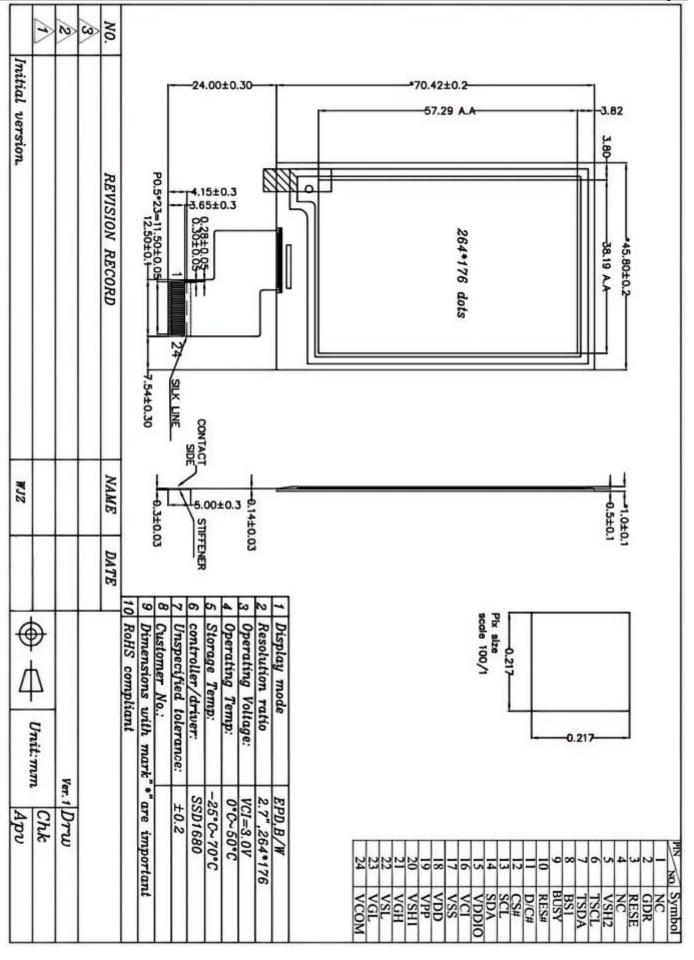
Customer	Standard
Description	2.7 E-paper Display
Model Name	2.7inch E-Paper
Date	2023/10/10
Revision	1.0

Table of contents

1. General Description	1
1.1 Over View	1
1.2 Features	1
1.3 Mechanical Specifications	1
1.4 Mechanical Drawing of EPD module	2
1.5 Reference Circuit	3
1.6 Input/Output Pin Assignment	4
2. COMMAND TABLE	5
3. Environmental	
3.1 HANDLING, SAFETYAND ENVIROMENTAL REQUIREMENTS	
3.2 Reliability test	19
4. Electrical Characteristics	20
4.1 ABSOLUTE MAXIMUM RATING	20
4.2 DC CHARACTERISTICS	20
4.3 Serial Peripheral Interface Timing	
4.3 Serial Peripheral Interface Timing	
	22
4.4 MCU Interface 4.4-1 MCU interface selection 4.4-2 MCU Serial Peripheral Interface (4-wire SPI)	22
4.4 MCU Interface 4.4-1 MCU interface selection	22
4.4 MCU Interface 4.4-1 MCU interface selection 4.4-2 MCU Serial Peripheral Interface (4-wire SPI)	22
 4.4 MCU Interface	22 22 22 23 25
 4.4 MCU Interface	22 22 22 23 25 26
 4.4 MCU Interface	22 22 22 23 23 25 26 26
 4.4 MCU Interface	22 22 22 23 23 25 26 26 27
 4.4 MCU Interface	22 22 22 23 25 26 26 26 27 27
 4.4 MCU Interface	22 22 22 23 23 25 26 26 26 27 27 27 27
 4.4 MCU Interface	22 22 22 23 23 25 26 26 26 27 27 27 27 27 28

1. General Description

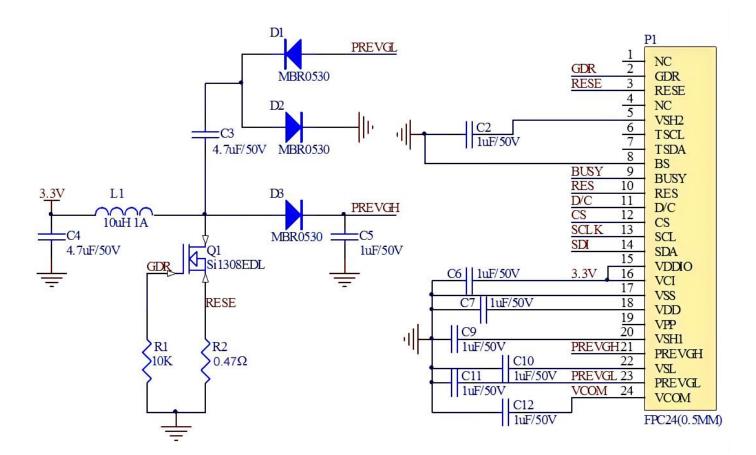
1.1 Over View


2.7inch e-Paper is an Active Matrix Electrophoretic Display (AMEPD), with interface and a reference system design. The 2.7" active area contains 264 × 176 pixels, and has 1-bit Black/White full display capabilities. An integrated circuit contains gate buffer, source buffer, interface, timing control logic, oscillator, DC-DC, SRAM, LUT, VCOM and border are supplied with each panel.

1.2 Features

- ■264 × 176 pixels display
- High contrast
- High reflectance
- Ultra wide viewing angle
- Ultra low power consumption
- Pure reflective mode
- Bi-stable display
- Commercial temperature range
- Landscape, portrait modes
- Hard-coat antiglare display surface
- •Ultra Low current deep sleep mode
- On chip display RAM
- •Waveform can stored in On-chip OTP or written by MCU
- Serial peripheral interface available
- On-chip oscillator
- •On-chip booster and regulator control for generating VCOM, Gate and Source driving voltage
- •I2C signal master interface to read external temperature sensor/built-in temperature sensor

1.3 Mechanical Specifications


Parameter	Specifications	Unit	Remark
Screen Size	2.7	Inch	
Display Resolution	264 (V) × 176 (H)	Pixel	Dpi:117
Active Area	57.29(V) × 38.19(H)	mm	
Pixel Pitch	0.217 × 0.217	mm	
Pixel Configuration	Rectangle		
Outline Dimension	70.42(V) × 45.8(H) × 1.23(D)	mm	
Weight	5.5 ± 0.5	g	

1.4 Mechanical Drawing of EPD module -2 -

1.5 Reference Circuit

Note:

- 1. Inductor L1 is wire-wound inductor. There are no special requirements for other parameters.
- 2. Suggests using Si1304BDL or Si1308EDL TUBE MOS (Q1), otherwise it may affect the normal boost of the circuit.
- 3. The default circuit is 4-wire SPI.
- 4. Default voltage value of all capacitors is 50 V.

2.7inch E-Paper

SEENGREAT

1.6 Input/Output Pin Assignment

Pin #	Single	Description	Remark
1	NC	No connection and do not connect with other NC pins	Keep Open
2	GDR	N-Channel MOSFET Gate Drive Control	
3	RESE	Current Sense Input for the Control Loop	
4	NC	No connection and do not connect with other NC pins e	Keep Open
5	VSH2	This pin is Positive Source driving voltage	
6	TSCL	I ² C Interface to digital temperature sensor Clock pin	
7	TSDA	I ² C Interface to digital temperature sensor Date pin	
8	BS1	Bus selection pin	Note 1.5-5
9	BUSY	Busy state output pin	Note 1.5-4
10	RES #	Reset	Note 1.5-3
11	D/C #	Data /Command control pin	Note 1.5-2
12	CS #	Chip Select input pin	Note 1.5-1
13	SCL	serial clock pin (SPI)	
14	SDA	serial data pin (SPI)	
15	VDDIO	Power for interface logic pins	
16	VCI	Power Supply pin for the chip	
17	VSS	Ground	
18	VDD	Core logic power pin	
19	VPP	Power Supply for OTP Programming	
20	VSH1	This pin is Positive Source driving voltage	
21	VGH	This pin is Positive Gate driving voltage	
22	VSL	This pin is Negative Source driving voltage	
23	VGL	This pin is Negative Gate driving voltage	
24	VCOM	These pins are VCOM driving voltage	

Note 1.5-1: This pin (CS#) is the chip select input connecting to the MCU. The chip is enabled for MCU communication: only when CS# is pulled LOW.

Note 1.5-2: This pin (D/C#) is Data/Command control pin connecting to the MCU. When the pin is pulled HIGH, the data will be interpreted as data. When the pin is pulled LOW, the data will be interpreted as command.

Note 1.5-3: This pin (RES#) is reset signal input. The Reset is active low.

Note 1.5-4: This pin (BUSY) is Busy state output pin. When Busy is High the operation of chip should not be interrupted and any commands should not be issued to the module. The driver IC will put Busy pin High when the driver IC is working such as:

- Outputting display waveform; or
- Communicating with digital temperature sensor

Note 1.5-5: This pin (BS1) is for 3-line SPI or 4-line SPI selection. When it is "Low", 4-line SPI is selected. When it is "High", 3-line SPI (9 bits SPI) is selected.

2. COMMAND TABLE

/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	DO	Command	Descripti	on		
0	0	01	0	0	0	0	0	0	0	1	Driver Output control	Gate setti			
0	1	01	A7	As	As	A	A3	A ₂	A	A	Sinter Super Control], 296 MU	x
0	1	-	0	0	0	0	0	0	0	As	-			tting as (A	
		-	17.			-		17		1000	-	D (0.0) - (
0	1		0	0	0	0	0	B2	Bı	Bo		B[2]: GD Selects th GD=0 [PC G0 is the output sec GD=1, G1 is the output sec B[1]: SM	nning seq ne 1st out DR], 1st gate o quence is quence is canning o	uence and	nnel, gat 2, G3, nnel, gat 33, G2, .
												interlaced SM=1, G0, G2, G)	295 (left an 94, G1, G3	
0	0	03	0	0	0	0	0	0	1	1	Gate Driving voltage	TB = 1, so Set Gate	driving vo		
2	0	03	0	0	0	0 A4	0 A3	0 A2	1 A1	1 Ao	Gate Driving voltage Control	TB = 0 [Pi TB = 1, so Set Gate A[4:0] = 0	driving vo	G295 to G bitage	0.
100	2	03			1.111							TB = 0 [Pr TB = 1, so Set Gate A[4:0] = 0 VGH setti	driving vo 0h [POR] ng from 1	G295 to G oltage 0V to 20V	0.
2	2	03			1.111							TB = 0 [P0 TB = 1, so A[4:0] = 0 VGH setti A[4:0]	driving vo 0h [POR] ng from 1 VGH	G295 to G oltage 10V to 20V A[4:0]	0. VGH
2	2	03			1.111							TB = 0 [Pd TB = 1, so A[4:0] = 0 VGH setti A[4:0] 00h	driving vo 0h [POR] ng from 1 VGH 20	G295 to G bltage OV to 20V A[4:0] ODh	0. VGH 15
2	2	03			1.111							TB = 0 [P0 TB = 1, so A[4:0] = 0 VGH setti A[4:0] 00h 03h	driving vo 0h [POR] ng from 1 VGH 20 10	G295 to G oltage 0V to 20V A[4:0] 0Dh 0Eh	0. VGH 15 15.5
2	2	03			1.111							TB = 0 [P4 TB = 1, so A[4:0] = 0 VGH setti A[4:0] 00h 03h 04h	driving vo 0h [POR] ng from 1 VGH 20 10 10.5	G295 to G oltage 0V to 20V A[4:0] 0Dh 0Eh 0Fh	0. VGH 15 15.5 16
2	2	03			1.111							TB = 0 [P4 TB = 1, so A[4:0] = 0 VGH setti A[4:0] 00h 03h 04h 05h	driving vo 0h [POR] ng from 1 VGH 20 10 10.5 11	G295 to G oltage 0V to 20V A[4:0] 0Dh 0Eh 0Fh 10h	0. VGH 15 15.5 16 16.5
2	2	03			1.111							TB = 0 [P4 TB = 1, so A[4:0] = 0 VGH setti A[4:0] 00h 03h 04h 05h 06h	can from 0 driving vo 0h [POR] ng from 1 VGH 20 10 10.5 11 11.5	G295 to G oltage 0V to 20V A[4:0] 0Dh 0Eh 0Fh 10h 11h	0. VGH 15 15.5 16 16.5 17
2	2	03			1.111							TB = 0 [Pd TB = 1, so A[4:0] = 0 VGH setti A[4:0] 00h 03h 04h 05h 06h 07h	can from 0 driving vo 0h [POR] ng from 1 VGH 20 10 10.5 11 11.5 12	G295 to G oltage 0V to 20V A[4:0] 0Dh 0Eh 0Fh 10h 11h 12h	0. VGH 15 15.5 16 16.5 17 17.5
2	2	03			1.111							TB = 0 [P4 TB = 1, so A[4:0] = 0 VGH setti A[4:0] 00h 03h 04h 05h 06h 07h 08h	can from 0 0h [POR] ng from 1 VGH 20 10 10.5 11 11.5 12 12.5	G295 to G oltage 0V to 20V A[4:0] 0Dh 0Eh 0Fh 10h 11h 12h 13h	0. VGH 15 15.5 16 16.5 17 17.5 18
2	2	03			1.111							TB = 0 [P4 TB = 1, so A[4:0] = 0 VGH setti A[4:0] 00h 03h 04h 05h 06h 07h 08h 07h	driving vo 0h [POR] ng from 1 VGH 20 10 10.5 11 11.5 12 12.5 12	G295 to G oltage 0V to 20V A[4:0] 0Dh 0Eh 0Fh 10h 11h 12h 13h 14h	0. VGH 15 15.5 16 16.5 17 17.5 18 18.5
2	2	03			1.111							TB = 0 [P4 TB = 1, so A[4:0] = 0 VGH setti A[4:0] 00h 03h 04h 05h 06h 07h 08h 07h 08h	driving vo 0h [POR] ng from 1 VGH 20 10 10.5 11 11.5 12 12.5 12 12.5	G295 to G oltage 0V to 20V A[4:0] 0Dh 0Eh 0Fh 10h 11h 12h 13h 14h 15h	0. VGH 15 15.5 16 16.5 17 17.5 18 18.5 19
100	2	03			1.111							TB = 0 [P4 TB = 1, so A[4:0] = 0 VGH setti A[4:0] 00h 03h 04h 05h 06h 07h 08h 07h 08h 07h 08h 07h	driving vo 0h [POR] ng from 1 VGH 20 10 10.5 11 11.5 12 12.5 12 12.5 12 12.5 13	G295 to G oltage 0V to 20V A[4:0] 0Dh 0Eh 0Fh 10h 11h 12h 13h 14h 15h 16h	0. VGH 15 15.5 16 16.5 17 17.5 18 18.5 19 19.5
0	2	03			1.111							TB = 0 [P4 TB = 1, so A[4:0] = 0 VGH setti A[4:0] 00h 03h 04h 05h 06h 07h 08h 07h 08h 07h 08h 07h 08h 07h	can from 0 0h [POR] ng from 1 VGH 20 10 10.5 11 11.5 12 12.5 12 12.5 12 12.5 13 13.5	G295 to G oltage 0V to 20V A[4:0] 0Dh 0Eh 0Fh 10h 11h 12h 13h 14h 15h 16h 17h	0. VGH 15 15.5 16 16.5 17 17.5 18 18.5 19 19.5 20
1.2	2	03			1.111							TB = 0 [P4 TB = 1, so A[4:0] = 0 VGH setti A[4:0] 00h 03h 04h 05h 06h 07h 08h 07h 08h 07h 08h 07h	driving vo 0h [POR] ng from 1 VGH 20 10 10.5 11 11.5 12 12.5 12 12.5 12 12.5 13	G295 to G oltage 0V to 20V A[4:0] 0Dh 0Eh 0Fh 10h 11h 12h 13h 14h 15h 16h	0. VGH 15 15.5 16 16.5 17 17.5 18 18.5 19 19.5

D7

D6 D5 D4 D3 D2 D1 D0 Command

Description

Command Table R/W# D/C# Hex

	Dica	HUA	0,	00	00	04	05	UL		00	COIIII	nanu		Description
0	0	04	0	0	0	0	0	1	0	0		e Driving	voltage	Set Source driving voltage
0	1		A7	As	As	A	A ₃	A ₂	A ₁	A ₀	Contro	lo		A[7:0] = 41h [POR], VSH1 at 15V
0	1		B7	Be	Bo	B ₄	Ba	B ₂	B1	Bo	1			B[7:0] = A8h [POR], VSH2 at 5V.
0	1		C7	C ₆	C ₅	C ₄	C ₃	C ₂	C1	Co	1			C[7:0] = 32h [POR], VSL at -15V Remark: VSH1>=VSH2
<u>.</u>	J/B[7]	= 1		00	0.0	04	00	1.	7]/B[-)			C[7] = 0,
	H1/V		volta	ae se	tting	from	2.4V					e setting	from 9V	
	3.8V	OTTE	rona;	90.00	ung	nom	2.11		17V		. ronug	e setting	nom ov	Vol betang nom ov to my
_	/B[7:0]	VSH	1/VSH2	2 A/8	3[7:0]	VSH1	/VSH2		A/B[7:0) VS	H1/VSH2	A/B[7:0]	VSH1/VSH	[2] C[7:0] VSL
	8Eh	-	2.4		\Fh	-	5.7		23h		9	3Ch	14	0Ah -5
	8Fh 90h	-	2.5	-	30h 31h	-	1.8		24h 25h	-	9.2	3Dh 3Eh	14.2	0Ch -5.5
	91h	-	2.0	-	32h	-	6		26h	+	9.6	3Fh	14.4	OEh -6
	92h		2.8	E	33h	6	.1		27h		9.8	40h	14.8	10h -6.5
	93h		2.9	-	34h	-	.2		28h		10	41h	15	12h -7 14h -7.5
	94h 95h	-	3	-	35h 36h	-	.3		29h 2Ah	+	10.2	42h 43h	15.2	141 -1.5 16h -8
	96h	-	3.2		37h	-	1.5		28h	+	10.4	44h	15.6	18h -8.5
	97h		3.3		38h		.6		2Ch		10.8	45h	15.8	1Ah -9
_	98h	-	3.4	-	39h		.7		2Dh		11	46h	16	1Ch -9.5
-	99h 9Ah		3.5 3.6	-	BAh BBh	-	.8	-	2Eh 2Fh	-	11.2	47h 48h	16.2	1Eh -10
-	9Bh	-	3.7	-	BCh	-	7		30h	-	11.6	49h	16.6	20h -10.5
	9Ch	-	3,8	-	Dh	7	1		31h		11.8	4Ah	16.8	22h -11
	9Dh		3.9	-	BEh		.2		32h		12	4Bh	17	24h -11.5
	9Eh 9Fh	-	4		3Fh 20h	-	.3		33h 34h	+	12.2	Other	NA	26h -12 28h -12.5
	A0h	-	4.2	-	C1h		.5		35h	-	12.6	-		200 -12.0 2Ah -13
	A1h		4.3	(C2ħ	7	.6		36h		12.8			2Ch -13.5
	A2h		4.4	-	C3h		.7		37h	-	13		_	2Eh -14
	A3h A4h	-	4.5	-	24h 25h		.8		38h 39h	+	13.2		-	30h -14.5
	A5h	-	4.7	-	26h		8		3Ah	+	13.6			32h -15
	A6h		4.8	0	27h	8	k.1		3Bh		13.8			34h -15.5
	A7h	-	4.9	-	C8h	-	1.2							36h -16
	ASh	+	5		C9h CAh	-	1.3							38h -16.5 3Ah -17
	AAh	+	5.2	-	Bh	-	1.5							3Ah -17 Other NA
	ABh		5.3	0	Ch	8	1.6							Solidi Her
	ACh	-	5.4	-	Dh	-	.7							
-	ADh AEh	-	5.5 5.6	-	Eh ther		1.8 NA							
								6						
0	0	08	0	0	0	0	1	0	0	0	Initial	Code Se	tting	Program Initial Code Setting
		00	0		. v					0		Program	ung	in regram midal oodo ootting
												regram		The command required CLKEN=1.
														Refer to Register 0x22 for detail.
														BUSY pad will output high during
														operation.
0	0	00	0	0		0	4	0	0	4	Maite	Declater	for lattel	Weite Desister for Initial Code Ontile
0	0	09	0	0	0	0	1	0	0	1		Setting	for initial	Write Register for Initial Code Setting Selection
0	1		A7	Aδ	As	A4	A ₃	A ₂	A ₁	A	Code	Setting		A[7:0] ~ D[7:0]: Reserved
0	1		B ₇	Be	Bs	B ₄	B ₃	B ₂	B ₁	Bo				Details refer to Application Notes of Initia
0	1		C7	C ₆	Co	C4	C ₃	C2	C1	Co				Code Setting
0	1		D7	De	Ds	D4	D ₃	D ₂	Dı	Do	1			
-	-										-			
0	0	0A	0	0	0	0	1	0	1	0		Register Setting	for Initial	Read Register for Initial Code Setting

Commond Table

R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	DO	Command	Descriptio	n
0	0	0C	0	0	0	0	1	1	0	0	Booster Soft start	Booster Enab	ble with Phase 1, Phase 2 and Phase
0	1		1	As	As	A4	A ₃	A ₂	A1	A	Control	for soft start of	current and duration setting.
0	1		1	Be	Bo	B ₄	B ₃	B ₂	B	Bo	5-00-60,050	A[7:0] -> Soft	start setting for Phase1
0	1		1	C ₆	C ₅	C ₄	C ₃	C2	C ₁	Co	-	= 8	Bh [POR]
	100		10						-	-	_	B[7:0] -> Soft	start setting for Phase2 Ch [POR]
0	1		0	0	D ₅	D ₄	D ₃	D ₂	D1	Do		C[7:0] -> Soft	t start setting for Phase3
												= 9 D[7:0] -> Dur	6h [POR] ation setting
													Fh [POR]
												Bit Des A(6:01/	cription of each byte: B[6:0] / C[6:0]:
												Bit[6:4]	Driving Strength
												000	Selection
													1(Weakest)
												001	2
												010	3
												011	4
												100	5
												101	6
												110	7
												111	8(Strongest)
												Bit[3:0]	Min Off Time Setting of GDR [Time unit]
												0000	NA
												0011	NA
												0100	2.6
												0101	3.2
									L			0110	3.9
			-	-					-			0111	4.6
												1000	5.4
			-	-					-	-		1001	6.3
			_		_							1010	7.3
									L			1011	8.4
												1100	9.8
												1101	11.5
												1110	13.8
			-									1111	16.5
												D[5:4]: D[3:2]:	duration setting of phase duration setting of phase 3 duration setting of phase 2 duration setting of phase 1
												Bit[1:0]	Duration of Phase [Approximation]
			_					-	-			00	10ms
												01	20ms
												10	30ms
												11	40ms
0	-	40	0	0	0		0	0	0	0 1-			
0	0	10	0	0	0	1	0	0	0	and the state of t	Deep Sleep mode		p mode Control: Description
0	1		0	0	0	0	0	0	A ₁	A ₀		A[1:0] : 00	Normal Mode [POR]
													Enter Deep Sleep Mode 1
												11	Enter Deep Sleep Mode 1
												enter Deep keep outpu Remark: To Exit De	ommand initiated, the chip will Sleep Mode, BUSY pad will It high. ep Sleep mode, User required VRESET to the driver

/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	DO	Command	Description
No.	100000000	10000000		1122-0-0	TRUCK	Transfer of	CONTRACTOR OF	(Descrote)	1000000	NC302		
0	0	11	0	0	0	1	0	0 A2	0 At	1 A0	Data Entry mode setting	Define data entry sequence A[2:0] = 011 [POR] A [1:0] = ID[1:0] Address automatic increment / decrement setting The setting of incrementing or decrementing of the address counter can be made independently in each upper and lower bit of the address. 00 –Y decrement, X decrement, 01 –Y decrement, X increment, 10 –Y increment, X increment, 11 –Y increment, X increment [POR] A[2] = AM Set the direction in which the address counter is updated automatically after data are written to the RAM. AM= 0, the address counter is updated if the X direction. [POR] AM = 1, the address counter is updated in the Y direction.
0	0	12	0	0	0	1	0	0	1	0	SW RESET	It resets the commands and parameters to their S/W Reset default values except R10h-Deep Sleep Mode During operation, BUSY pad will output high. Note: RAM are unaffected by this command.
0	0	14	0	0	0	1	0	1	0	0	HV Ready Detection	HV ready detection A[7:0] = 00h [POR] The command required CLKEN=1 and ANALOGEN=1. Refer to Register 0x22 for detail. After this command initiated, HV Ready detection starts. BUSY pad will output high during detection. The detection result can be read from the Status Bit Read (Command 0x2F).
0	1		0	As	As	Aa	0	A ₂	Aı	Ao		A[6:4]=n for cool down duration: 10ms x (n+1) A[2:0]=m for number of Cool Down Loop to detect. The max HV ready duration is 10ms x (n+1) x (m) HV ready detection will be trigger after each cool down time. The detection will be completed when HV is ready. For 1 shot HV ready detection, A[7:0] can be set as 00h.

./W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	DO	Command	Description	
0	0	15	0	0	0	1	0	1 A2	0 A1	1 A0	VCI Detection	VCI Detection A[2:0] = 100 [POR] , Detect level at	2.3V
0			U					~2	~	~		A[2:0] : VCI level Detect A[2:0] VCI level	00000
												011 2.2V	
												100 2.3V	
												101 2.4V	
												110 2.5V	
												111 2.6V	
												Other NA	
												The command required CLKEN=1 a ANALOGEN=1 Refer to Register 0x22 for detail. After this command initiated, VCI detection starts. BUSY pad will output high during detection. The detection result can be read fro Status Bit Read (Command 0x2F).	
0	0	18	0	0	0	1	1	0	0	0	Temperature Sensor	Temperature Sensor Selection	
0	1	10	A7	As	As	A4	A3	A2	At	A	Control	A[7:0] = 48h [POR], external	
Ŭ.			~		~	174		~		~		temperatrure sensor A[7:0] = 80h Internal temperature se	enso
0	0	1A	0	0	0	1	1	0	1	0	Temperature Sensor	Write to temperature register.	
0	1		A7	As	As	A4	A3	A ₂	Aı	Ao	Control (Write to	A[7:0] = 7Fh [POR]	
											temperature register)		
0	0	1B	0	0	0	1	1	0	1	1	Temperature Sensor	Read from temperature register.	
1	1		A7	As	As	A4	A3	A2	A ₁	Ao	Control (Read from temperature register)		
0	0	1C	0	0	0	1	1	1	0	0	Temperature Sensor	Write Command to External tempera	ature
0	1		A ₇	As	As	A4	A3	A ₂	A1	A ₀	Control (Write Command	sensor.	
0	1		B7	Be	B5	B4	Ba	B ₂	B1	Bo	to External temperature sensor)	A[7:0] = 00h [POR], B[7:0] = 00h [POR],	
0	1		C7	Ce	C ₅	C4	C ₃	C ₂	C1	Co	Sensor/	C[7:0] = 00h [POR],	
												A[7:6]	_
												A[7:6] Select no of byte to be sent 00 Address + pointer	-
												01 Address + pointer + 1st paramete	r
												10 Address + pointer + 1st paramete 2nd pointer	r+
												11 Address	
												A[5:0] – Pointer Setting	
												B[7:0] - 1st parameter	
												C[7:0] – 2 nd parameter The command required CLKEN=1.	
												Refer to Register 0x22 for detail.	
												After this command initiated, Write	
												Command to external temperature	
												sensor starts. BUSY pad will output during operation.	high
_							-					Losses The Construction	
0	0	1F	0	0	0	1	1	1	1	1	IC revision Read	Read IC revision [POR 0x0D]	

	man	17111						-					
2/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	DO	Command	Descripti	on
0	0	20	0	0	1	0	0	0	0	0	Master Activation	The Displa located at BUSY pac operation.	Display Update Sequence ay Update Sequence Option is R22h. d will output high during User should not interrupt this to avoid corruption of panel
0	0	21	0	0	1	0	0	0	0	1	Display Update Control	RAM cont	tent option for Display Update
0	1		A7	As	As	A4	A3	A ₂	A	Ao	1	A[7:0] = 0 B[7:0] = 0	0h [POR]
0	1		B7	0	0	0	0	0	0	0		A[7:4] Rec 0000 0100 1000 A[3:0] BW 0000 0100 1000 B[7] Sourc	d RAM option Normal Bypass RAM content as 0 Inverse RAM content / RAM option Normal Bypass RAM content as 0 Inverse RAM content
0	0	24	0	0	1	0	0	1	0	0	Write RAM (Black White) / RAM 0x24	After this of written into command advance a For Write	of Write RAM(BW) = 1

./W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	DO	Command	Description
0	0	22	0 A7	0 As	1 As	0 A4	0 A3	0 A2	1 A1	0 Ao	Display Update Control 2	Display Update Sequence Option: Enable the stage for Master Activation A[7:0]= FFh (POR)
												Operating sequence (in Hex)
												Enable clock signal 80
												Disable clock signal 01
												Enable clock signal C0
												Disable Analog 03
												Enable clock signal → Load LUT with DISPLAY Mode 1 91 → Disable clock signal
												Enable clock signal → Load LUT with DISPLAY Mode 2 99 → Disable clock signal
												Enable clock signal → Load temperature value → Load LUT with DISPLAY Mode 1 → Disable clock signal
												Enable clock signal > Load temperature value > Load LUT with DISPLAY Mode 2 > Disable clock signal
												Enable clock signal Enable Analog Display with DISPLAY Mode 1 C7 Disable Analog Disable OSC
												Enable clock signal → Enable Analog → Display with DISPLAY Mode 2 CF → Disable Analog → Disable OSC
												Enable clock signal → Enable Analog → Load temperature value → DISPLAY with DISPLAY Mode 1 → Disable Analog → Disable OSC
												Enable clock signal → Enable Analog → Load temperature value → DISPLAY with DISPLAY Mode 2 → Disable Analog → Disable OSC
0	0	26	0	0	1	0	0	1	1	0	Write RAM (RED) / RAM 0x26	After this command, data entries will be written into the RED RAM until another command is written. Address pointers w advance accordingly.
								A				For Red pixel: Content of Write RAM(RED) = 1 For non-Red pixel [Black or White]: Content of Write RAM(RED) = 0
0	0	27	0	0	1	0	0	1	1	1	Read RAM	After this command, data read on the MCU bus will fetch data from RAM. According to parameter of Register 41h to select reading RAM0x24/ RAM0x26, until another command is written. Address pointers will advance accordingly.

2/W#		10.00		1.02213		No.	1.2.1.5.1	100000	100000	100527					
	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	DO	Command	Description	n		
0	0	28	0	0	1	0	1	0	0	0	VCOM Sense	for duration VCOM valu The sensed register	and defined ue. d VCOM and requiner N=1 egister 0	d in 29h b 1 voltage uired CLk 0x22 for d	
0	0	20	0	0		0	4	0	0		VCOM Cases Duration	Ctabling tim	an haku		
0	0	29	0	0	1	0	1	0	0	1	VCOM Sense Duration	sensing mo			ing VCOM
0	1		0	1	0	0	A ₃	A ₂	A ₁	Ao		A[3:0] = 9h	, duratio	on = 10s.	
												VCOM sen	se dura	tion = (A[3:0]+1) sec
0	0	2A	0	0	1	0	1	0	1	0	Program VCOM OTP	Program V	COM re	aister inte	OTP
												The comma Refer to Re BUSY pad operation.	egister 0	x22 for d	etail.
0	0	2C	0	0	1	0	1	1	0	0	Write VCOM register	Refer to Re BUSY pad operation.	egister 0 will outp	0x22 for d	etail.
0	0	2C	0 A7	0 A6	1 A5	0 A4	1 A3	1 A2	0 At	0 Ao	Write VCOM register	Refer to Re BUSY pad operation.	will outp	out high d er from M	etail. Iuring
-		2C	-		-	-	-	-	-	-	Write VCOM register	Refer to Re BUSY pad operation. Write VCO! A[7:0] = 001	will outp	out high d er from M	etail. Iuring
-		2C	-		-	-	-	-	-	-	Write VCOM register	Refer to Re BUSY pad operation. Write VCO! A[7:0] = 00!	egister 0 will out; M regist h [POR]	out high d er from M	etail. Iuring ICU interface
-		2C	-		-	-	-	-	-	-	Write VCOM register	Refer to Re BUSY pad operation. Write VCOM A[7:0] = 000	egister 0 will outp M regist h [POR] /COM	out high d er from M	etail. luring ICU interface VCOM
-		2C	-		-	-	-	-	-	-	Write VCOM register	Refer to Re BUSY pad operation. Write VCOI A[7:0] = 000 A[7:0] V 08h	will outp M regist h [POR] /COM -0.2	er from M	etail. luring ICU interface VCOM -1.7
-		2C	-		-	-	-	-	-	-	Write VCOM register	Refer to Re BUSY pad operation. Write VCO! A[7:0] = 00! A[7:0] \ 08h 0Ch	will out; M regist h [POR] /COM -0.2 -0.3	22 for d but high d er from M A[7:0] 44h 48h	etail. luring ICU interface VCOM -1.7 -1.8
-		2C	-		-	-	-	-	-	-	Write VCOM register	Refer to Re BUSY pad operation. Write VCOI A[7:0] = 001 A[7:0] \ 08h 0Ch 10h	will out; M regist h [POR] /COM -0.2 -0.3 -0.4	A[7:0] A[7:0] 44h 48h 4Ch	etail. luring ICU interface VCOM -1.7 -1.8 -1.9
-		2C	-		-	-	-	-	-	-	Write VCOM register	Refer to Re BUSY pad operation. Write VCOI A[7:0] = 000 A[7:0] \ 08h 0Ch 10h 14h	egister 0 will out; M regist h [POR] /COM -0.2 -0.3 -0.4 -0.5	A[7:0] 44h 4Ch 50h	etail. luring ICU interface VCOM -1.7 -1.8 -1.9 -2
-		2C	-		-	-	-	-	-	-	Write VCOM register	Refer to Re BUSY pad operation. Write VCO! A[7:0] = 00! A[7:0] \ 08h 0Ch 10h 14h 18h	egister 0 will out; M regist h [POR] /COM -0.2 -0.3 -0.4 -0.5 -0.6	22 for d but high d er from M 44h 48h 4Ch 50h 54h	etail. luring ICU interface VCOM -1.7 -1.8 -1.9 -2 -2 -2.1
-		2C	-		-	-	-	-	-		Write VCOM register	Refer to Re BUSY pad operation. Write VCOI A[7:0] = 001 A[7:0] \ 08h 0Ch 10h 14h 14h 18h 1Ch	egister 0 will out; M regist h [POR] /COM -0.2 -0.3 -0.4 -0.5 -0.6 -0.7	A[7:0] 44h 48h 4Ch 50h 54h 58h	etail. luring ICU interface VCOM -1.7 -1.8 -1.9 -2 -2 -2.1 -2.1 -2.2
-		2C	-		-	-	-	-	-		Write VCOM register	Refer to Re BUSY pad operation. Write VCON A[7:0] = 000 A[7:0] \ 08h 0Ch 10h 14h 18h 1Ch 20h	egister 0 will out; M regist h [POR] /COM -0.2 -0.3 -0.4 -0.5 -0.6 -0.7 -0.8	A[7:0] 44h 4Ch 50h 54h 5Ch	etail. luring ICU interface VCOM -1.7 -1.8 -1.9 -2 -2.1 -2.1 -2.2 -2.3
-		2C	-		-	-	-	-	-		Write VCOM register	Refer to Re BUSY pad operation. Write VCOI A[7:0] = 00I A[7:0] 1 A[7:0] 1 08h 0Ch 10h 14h 18h 1Ch 20h 24h	egister 0 will out; M regist h [POR] /COM -0.2 -0.3 -0.4 -0.5 -0.6 -0.7 -0.8 -0.9	A[7:0] 44h 48h 4Ch 50h 54h 58h 5Ch 60h	etail. luring ICU interface VCOM -1.7 -1.8 -1.9 -2 -2.1 -2.1 -2.2 -2.3 -2.3 -2.4
-		2C	-		-	-	-	-	-		Write VCOM register	Refer to Re BUSY pad operation. Write VCOI A[7:0] = 000 A[7:0] \ 08h 0Ch 10h 14h 18h 1Ch 20h 24h 28h	egister 0 will out; M regist h [POR] /COM -0.2 -0.3 -0.4 -0.5 -0.6 -0.7 -0.8 -0.9 -1	A[7:0] 44h 48h 4Ch 50h 54h 5Ch 60h 64h	etail. luring ICU interface VCOM -1.7 -1.8 -1.9 -2 -2.1 -2.2 -2.3 -2.4 -2.5
-		2C	-		-	-	-	-	-		Write VCOM register	Refer to Re BUSY pad operation. Write VCOI A[7:0] = 000 A[7:0] 1 0Ch 10h 14h 18h 1Ch 20h 24h 28h 2Ch	egister 0 will out; M regist h [POR] /COM -0.2 -0.3 -0.4 -0.5 -0.6 -0.7 -0.6 -0.7 -0.8 -0.9 -1 -1.1	A[7:0] 44h 48h 4Ch 50h 54h 58h 5Ch 60h 64h 68h	etail. luring ICU interface VCOM -1.7 -1.8 -1.9 -2 -2.1 -2.2 -2.1 -2.2 -2.3 -2.4 -2.5 -2.6
-		2C	-		-	-	-	-	-		Write VCOM register	Refer to Re BUSY pad operation. Write VCOI A[7:0] = 000 A[7:0] \ 0Ch 10h 14h 18h 1Ch 20h 24h 28h 2Ch 30h	egister 0 will out; M regist h [POR] /COM -0.2 -0.3 -0.4 -0.5 -0.6 -0.7 -0.8 -0.9 -1 -1.1 -1.2	A[7:0] 44h 4Ch 50h 54h 5Ch 60h 64h 68h 6Ch	etail. luring ICU interface VCOM -1.7 -1.8 -1.9 -2 -2.1 -2.2 -2.1 -2.2 -2.3 -2.4 -2.5 -2.6 -2.7
-		2C	-		-	-	-	-	-		Write VCOM register	Refer to Re BUSY pad operation. Write VCOI A[7:0] = 00I A[7:0] 1 A[7:0] 2 0Ch 10h 14h 18h 1Ch 20h 24h 28h 2Ch 30h 34h	egister 0 will out; M regist h [POR] /COM -0.2 -0.3 -0.4 -0.5 -0.6 -0.7 -0.8 -0.9 -1 -1.1 -1.2 -1.3	A[7:0] 44h 48h 4Ch 50h 54h 5Ch 60h 64h 68h 68h 6Ch 70h	etail. luring ICU interface VCOM -1.7 -1.8 -1.9 -2 -2.1 -2.2 -2.3 -2.4 -2.3 -2.4 -2.5 -2.6 -2.7 -2.8

	D/C#	And in case of the local division of the loc	Color Stationer	D6	D5	D4	D3	D2	D1	DO	Command	Description
	0			1.000	10000	1000		10.00	0		OTP Register Read for	
0	1	2D	0 A7	0 A6	1 A5	0 A4	1 A3	1 A2	A	1 A0	Display Option	Read Register for Display Option:
1	1		B7	Be	B5	B ₄	B ₃	B ₂	Bi	Bo		A[7:0]: VCOM OTP Selection
1	1		C7	C ₆	C ₅	C ₄	C ₃	C ₂	Ct	Co	-	(Command 0x37, Byte A)
1	1		D7	De	Ds	D ₄	D3	D2	D1	D ₀	-	B[7:0]: VCOM Register
1	1		E7	E ₆	E ₅	E4	E ₃	E ₂	E	E		(Command 0x2C)
1	1		F7	F ₆	F5	F4	F3	F ₂	Ft	Fo		
1	1		G7	G	G5	G4	G ₃	G ₂	G ₁	Go		C[7:0]~G[7:0]: Display Mode (Command 0x37, Byte B to Byte F)
1	1		Hz	He	Hs	H ₄	H ₃	H ₂	H	Ho		[5 bytes]
1	1		17	16	15	14	13	12	In In	lo		
1	1	-	J7	Je	J5	14 J4	J3	J2	J ₁	Jo		H[7:0]~K[7:0]: Waveform Version
1	1		K7	Ke	K ₅	K4	K ₃	K ₂	Kı	Ko		(Command 0x37, Byte G to Byte J) [4 bytes]
	1		N/	N6	N5	N 4	N3	n ₂	NI	N0		[+ 5)(05]
0	0	2E	0	0	1	0	1	1	1	0	User ID Read	Read 10 Byte User ID stored in OTP:
1	1		A7	As	As	A4	A3	A ₂	A	A		A[7:0]]~J[7:0]: UserID (R38, Byte A and
1	1		B ₇	Be	Bs	B ₄	B ₃	B ₂	Bı	Bo		Byte J) [10 bytes]
1	1		C7	Ce	C ₅	C4	C ₃	C ₂	C1	Co	-	
1	1		D7	De	Ds	D ₄	D ₃	D ₂	Dı	Do		
1	1		E7	E6	Es	E4	E ₃	E ₂	E1	E ₀		
1	1		F7	Fe	F ₅	F ₄	F ₃	F ₂	F1	Fo		
1	1		G7	Ge	Gs	G4	G ₃	G ₂	Gi	Go	-	
1	1		Hz	He	Hs	H ₄	Ha	H ₂	H	Ho		
1	1		17	16	15	14	13	12	11	lo	-	
1	1		J7	Je	J5	J4	J ₃	J ₂	J	Jo	-	
0	0	2F	0	0	1	0	1	1	1	1	Status Bit Read	Read IC status Bit [POR 0x01]
1	1		0	0	As	A4	0	0	Aı	Ao		A[5]: HV Ready Detection flag [POR=0] 0: Ready 1: Not Ready A[4]: VCI Detection flag [POR=0] 0: Normal 1: VCI lower than the Detect level A[3]: [POR=0] A[2]: Busy flag [POR=0] 0: Normal 1: BUSY A[1:0]: Chip ID [POR=01] Remark: A[5] and A[4] status are not valid after RESET, they need to be initiated by command 0x14 and command 0x15 respectively.
0	0	30	0	0	1	1	0	0	0	0	Program WS OTP	Program OTP of Waveform Setting The contents should be written into RAN before sending this command. The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.

-		d Ta Hex		-	ne		-	-	-	-	Command	Description
		1. COURS	1000	D6	D5	D4	D3	D2	D1	DO	Command	Description
0	0	31	0	0	1	1	0	0	0	1	Load WS OTP	Load OTP of Waveform Setting The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.
0	0	32	0	0	1	1	0	0	1	0	Write LUT register	Write LUT register from MCU interface
0	1	02	Az	A	As	A4	Aa	A2	A	Ao	Trite Lot register	[227 bytes], which contains the content of
0	1	-	B7	Be	Bs	B4	B3	B2	Bi	Bo	-	VS[nX-LUTm], TP[nX], RP[n], SR[nXY],
0	1		:	:	:	:	:	:	:	:	-	FR and XON[nXY] Refer to Session 6.7 WAVEFORM
0	1					*		•	*			SETTING
0	0	34	0	0	1	1	0	1	0	0	CRC calculation	CRC calculation command For details, please refer to SSD1680A application note. BUSY pad will output high during operation.
0	0	35	0	0	1	1	0	1	0	1	CRC Status Read	CRC Status Read
1	1		A15	A14	A13	A12		A10	Aa	As		A[15:0] is the CRC read out value
1	1		A7	As	As	A	Aa	A ₂	A	Ao		
0	0	36	0	0	1	1	0	1	1	0	Program OTP selection	Program OTP Selection according to the OTP Selection Control [R37h and R38h] The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.
0	0	37	0	0	1	1	0	1	1	1	Write Register for Display	Write Register for Display Option
0	1		A7	0	0	0	0	0	0	0	Option	A[7] Spare VCOM OTP selection
0	1		B ₇	B6	Bs	B ₄	B ₃	B ₂	B ₁	B ₀		0: Default [POR] 1: Spare
0	1		C7	C ₆	C5	C4	C ₃	C ₂	Cı	Co		1. Opare
0	1		D ₇	D ₆	D ₅	D4	D ₃	D ₂	D1	Do]	B[7:0] Display Mode for WS[7:0]
0	1		E7	E ₆	E ₅	E4	E ₃	E ₂	E1	E ₀		C[7:0] Display Mode for WS[15:8] D[7:0] Display Mode for WS[23:16]
0	1		0	F6	0	0	F ₃	F2	F1	Fo		0: Display Mode 1
0	1		G7	G ₆	G5	G4	G ₃	G ₂	G1	G ₀		1: Display Mode 2
0	1		H	He	H ₅	H ₄	Ha	H ₂	H1	Ho		F[6]: Ping-Pong for Display Mode 2
0	1	-	17	16	15	14	13	12	11	lo		0: RAM Ping-Pong disable [POR]
0	1		J7	Je	Js	Ją	J3	J ₂	Jı	Jo		1: RAM Ping-Pong enable G[7:0]~J[7:0] module ID /waveform version. Remarks: 1) A[7:0]~J[7:0] can be stored in OTP 2) RAM Ping-Pong function is not support for Display Mode 1

	man D/C#	and the second second	D7	D6	D5	D4	D3	D2	D1	DO	Command	Description	
0	0	38	0	0	1	1	1	0	0	0	Write Register for User ID		
0	1	50	A7	As	As	A4	A3	A ₂	A	Ao	White Register for User ID		:0]: UserID [10 bytes]
0	1	-	B7	Be	Bs	B ₄	B ₃	B ₂	Bi	Bo	-	100000000000000000000000000000000000000	
0	1	-	C7	C ₆	C ₅	C ₄	C ₃	C2	C ₁	Co	-	Contraction of the second s	[7:0]~J[7:0] can be stored in
-	-	-	-	-	-				-	-	-	OTP	
0	1	-	D7	D ₆	D ₅	D4	D ₃	D ₂	D1	D ₀	-		
0	1		E7	E6	E ₅	E4	E ₃	E2	E1	Eo	4		
0	1		F7	F ₆	F ₅	F4	F ₃	F ₂	F1	Fo	-		
0	1		G7	G ₆	G ₅	G4	G ₃	G ₂	G1	G ₀			
0	1		H ₇	He	H ₅	H ₄	H ₃	H ₂	H ₁	Ho			
0	1		17	le	ls	14	13	12	11	lo			
0	1		J7	Je	J5	J4	J 3	Jz	J1	Jo			
-	-	00			1.	-		-		-	lozo	0.70	
0	0	39	0	0	1	1	1	0	0	1	OTP program mode	OTP program	m mode Normal Mode [POR]
0	1		0	0	0	0	0	0	Aı	Ao		A[1:0] = 11: programmin : User is req	Internal generated OTP
0	0	3C	0	0	1	1	1	1	0	0	Border Waveform Control	Select borde	r waveform for VBD
0	1		A7	As	As	A4	0	0	Aı	Ao		A[7:0] = C0h	[POR], set VBD as HIZ. ect VBD option
												A[7:6]	Select VBD as
												00	GS Transition,
													Defined in A[2] and A[1:0
												01	Fix Level, Defined in A[5:4]
												10	VCOM
												11[POR]	HIZ
													evel Setting for VBD
												A[5:4]	VBD level
												00	VSS
												01	VSH1
												10	VSL
												11	VSH2
												VBD Level S 00b: VCOM 10b: VSL; 11	; 01b: VSH1; lb: VSH2
												A[1:0]	VBD Transition
												00	LUTO
												01	LUT1
												10	LUT2
_					<u> </u>	_		_		_		11	LUT3
D	0	3F	0	0	1	1	1	1	1	1	End Option (EOPT)	Option for LL	IT end
0	1	VI	A7	As	A5	A	A3	A2	A1	Ao		Data bytes s command or	hould be set for this programmed into Wavefor
												22h Norr	nal
													rce output level keep
- 1													ious output before power of

		d Ta	and the same in some	1.2010	1.000	1212	-	- 2	1000		-	-	285				
	1007112	Hex		D6	D5	D4	D3	D2	D1	DO	Command	Descripti					
0	1	41	0	0	0	0	0	0	0	1 A0	Read RAM Option	RAM0x24	0 [POR] ad RAM corresponding to x24 ad RAM corresponding to				
	0		0				0					0					
0	0	44	0	1	0	0	0	1	0	0	Set RAM X - address Start / End position		ne start/en ddress in f				
0	1		0	0	As	A	A3	A ₂	A ₁	A ₀	-		unit for RA		cuon by c		
0	1		0	0	Bo	B4	B3	B ₂	B1	Bo			SA[5:0], XS EA[5:0], XE				
0	0	45	0	1	0	0	0	1	0	1	Set Ram Y- address	Specify th	ne start/en	d position	s of the		
0	1	10	Az	As	As	A	As	A ₂	A	A	Start / End position		ddress in t				
0	1		0	0	0	0	0	0	0	As		address u	unit for RA	M	- 33		
0	1		B ₇	Be	Bs	B	B ₃	B ₂	B1	Bo	-	A19-01- V	N 10-9145	Start DOE	- 000h		
0	1		0	0	0	0	0	0	0	Ba	-		SA[8:0], YS EA[8:0], YE				
			0							00		1-					
0	0	46	0	1	0	0	0	1		0	Auto Write RED RAM for	Auto Write	e RED RA	M for Rec	ular Patt		
0	1		A7	As	As	A4	0	Az	Aı	Ao		A[6:4]: St	ep Height, ter RAM in	h [POR] st step value, POR = b Height, POR= 000 er RAM in Y-direction o Gate			
												A[6:4]	Height	A[6:4]	Height		
												000	8	100	128		
												001	16	101	256		
												010	32	110	296		
												011	64	111	NA		
												A[2:0]: Step Width, POR= Step of alter RAM in X-dire according to Source		X-directi			
												A[2:0]	Width	A[2:0]	Width		
												000	8	100	128		
												001	16	101	176		
												010 32 110	NA				
												011	64	111	NA		
												BUSY partition	d w <mark>ill ou</mark> tpu	ut high du	ring		

	man	Contraction of the local division of the loc														
./W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	DO	Command	Descripti	on			
0	0	47	0 A7	1 As	0 A5	0 A4	0	1 A2	1 A1	1 A0	Auto Write B/W RAM for Regular Pattern		e B/W RAI	M for Reg	ular Patteri	
5	68		r.		2		ÿ	re l		10		A[7]: The 1st step value, POR = 0 A[6:4]: Step Height, POR= 000 Step of alter RAM in Y-direction according to Gate				
												A[6:4]	Height	A[6:4]	Height	
												000	8	100	128	
												001	16	101	256	
												010	32	110	296	
												011	64	111	NA	
												000	Width 8	A[2:0] 100	Width 128	
												001	16	101	176	
												010	32	110	NA	
												011	64	111	NA	
												During op high.	eration, B	USY pad	will output	
0	0	4E	0	1	0	0	1	1	1	0	Set RAM X address	Make init	al settings	for the R	AM X	
0	1		0	0	A5	A4	A3	A2	A1	Ao	counter	address i A[5:0]: 00	n the addr h [POR].	ess count	er (AC)	
0	0	4F	0	1	0	0	1	1	1	1	Set RAM Y address	Make init	al settings	for the R	AM Y	
0	1		A7	As	As	A4	A3	A2	A	Ao	counter		n the addr		er (AC)	
0	1		0	0	0	0	0	0	0	As		A[8:0]: 00	0h [POR].			
0	0	7F	0	1	1	1	1	1	1	1	NOP	does not module.	have any o	effect on t	ommand; i he display	
													it can be u emory Wri ds.			

3. Environmental

3.1 HANDLING, SAFETYAND ENVIROMENTAL REQUIREMENTS

WARNING

The display glass may break when it is dropped or bumped on a hard surface. Handle with care. Should the display break, do not touch the electrophoretic material. In case of contact with electrophoretic material, wash with water and soap.

CAUTION

The display module should not be exposed to harmful gases, such as acid and alkali gases, which corrode electronic components.

Disassembling the display module can cause permanent damage and invalidate the warranty agreements.

IPA solvent can only be applied on active area and the back of a glass. For the rest part, it is not allowed.

Observe general precautions that are common to handling delicate electronic components. The glass can break and front surfaces can easily be damaged. Moreover the display is sensitive to static electricity and other rough environmental conditions.

Mounting Precautions

(1) It's recommended that you consider the mounting structure so that uneven force (ex. Twisted stress) is not applied to the module.

(2) It's recommended that you attach a transparent protective plate to the surface in order to protect the EPD. Transparent protective plate should have sufficient strength in order to resist external force.

(3) You should adopt radiation structure to satisfy the temperature specification.

(4) Acetic acid type and chlorine type materials for the cover case are not desirable because the former generates corrosive gas of attacking the PS at high temperature and the latter causes circuit break by electro-chemical reaction.

(5) Do not touch, push or rub the exposed PS with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment. Do not touch the surface of PS for bare hand or greasy cloth. (Some cosmetics deteriorate the PS)

(6) When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials like chamois soaks with petroleum benzene. Normal-hexane is recommended for cleaning the adhesives used to attach the PS. Do not use acetone, toluene and alcohol because they cause chemical damage to the PS.

(7) Wipe off saliva or water drops as soon as possible. Their long time contact with PS causes deformations and color fading.

Product specification	The data sheet contains final product specifications.									
Limiting values										
Limiting values given are i	n accordance with the Absolute Maximum Rating System (IEC 134). Stress above one									
or more of the limiting values may cause permanent damage to the device. These are stress ratings only and										
operation of the device at	these or any other conditions above those given in the Characteristics sections of the									
specification is not implied. Exposure to limiting values for extended periods may affect device reliability.										
	Application information									

Where application information is given, it is advisory and dose not form part of the specification.

Product Environmental certification

ROHS

REMARK

All The specifications listed in this document are guaranteed for module only. Post-assembled operation or component(s) may impact module performance or cause unexpected effect or damage and therefore listed specifications is not warranted after any Post-assembled operation.

3.2 Reliability test

	TEST	CONDITION
1	U. I. T	T=70°C, RH=40%RH, For 240hrs
1	High-Temperature Operation	Test in white pattern
2	I and Tamana tama On anotic n	T = -25°C for 240 hrs
2	Low-Temperature Operation	Test in white pattern
3	High-Temperature Storage	T=50°C , RH=35%RH, For 240 hrs
4	Low-Temperature Storage	$T = 0^{\circ}C$, for 240 hrs
5	High Temperature, High Humidity Operation	T=40°C, RH=80%RH, For 240hrs
		T=50°C, RH=80%RH, For 240hrs
6	High Temperature, High Humidity Storage	Test in white pattern
		-25°C (30min) ~ 70°C(30min), 50 Cycle
7	Temperature Cycle	Test in white pattern
8	UV exposure Resistance	765 W/m² for 168hrs,40°C
		Air+/-15KV; Contact+/-8KV
		(Test finished product shell, not display only)
9	ESD Gun	Air+/-8KV; Contact+/-6KV
		(Naked EPD display, no including IC and FPC
		area) Air+/-4KV; Contact+/-2KV
		(Naked EPD display, including IC and FPC area)

Note:Put in normal temperature for 1hour after test finished, display performance is ok.

4. Electrical Characteristics

4.1 ABSOLUTE MAXIMUM RATING

Symbol	Parameter	Rating	Unit
V CI	Logic supply voltage	-0.5 to +6.0	V
V IN	Logic Input voltage	-0.5 to VCI +0.5	V
V OUT	Logic Output voltage	-0.5 to VCI +0.5	V
T OPR	Operation temperature range	0~50	°C
T STG	Storage temperature range	-25~70	°C
T STGo	Optimal Storage Temp	23 ± 2	°C
H STGo	Optimal Storage Humidity	55 ± 10	%RH

* Note: Avoid direct sunlight.

Table 4.1-1: Maximum Ratings

Note: Maximum ratings are those values beyond which damages to the device may occur. Functional operation should be restricted to the limits in the Electrical Characteristics chapter.

4.2 DC CHARACTERISTICS

The following specifications apply for.	V33-0V, VCI-3:0V, TOFR-25 C.
The following specifications apply for:	VSS=0V $VCI=3$ $0V$ TOPR=25°C

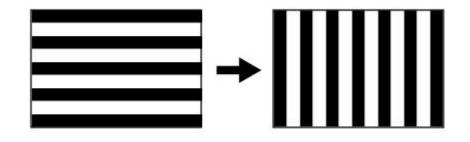
		Table 4.2-1: DC Chara	acteristics					
Symbol	Parameter	Test Condition	Applicable pin	Min.	Тур.	Max.	Unit	
VSS	Single ground			-	0	-	V	
VCI	VCI operation voltage		VCI	2.2	3.0	3.7	V	
VDD	Core logic voltage		VDD	1.7	1.8	1.9	V	
VIH	High level input voltage	-		0.8 VCI	-	-	V	
VIL	Low level input voltage	-		-	-	0.2 VCI	V	
VOH	High level output voltage	IOH = -100uA		0.9 VCI	-	-	V	
VOL	Low level output voltage	IOL = 100uA			-	0.1 VCI	V	
PTYP	Typical power	VCI = 3.0V			TBD		mW	
PSTPY	Deep sleep mode	VCI = 3.0V			0.003		mW	
Iopr_VCI	Typical operating current	VCI = 3.0V		-	TBD		mA	
	Full update time	25°C			3		sec	
-	Fast update time	25°C			1.5		sec	
	Partial update time	25°C			0.42		sec	
		DC/ DC off						
Idslp VCI	Module operating current	No clock			20		uA	
	Module operating current	No input load Ram	-	-	20		uA	
		data retain						
		DC/ DC off						
Islp_VCI	Deep sleep mode	No clock			1	5	uA	
isip_vci	Deep sleep mode	No input load Ram	-	-	1	5		
		data not retain						

Notes:

2) The difference between different refresh methods:

¹⁾ Refresh time: the time it takes for the whole process from the screen change to the screen stabilization.

Full refresh: The screen will flicker several times during the refresh process; Fast Refresh: The screen will flash once during the refresh process;


During the fast refresh or partial refresh of the electronic paper, it is recommended to add a full-screen refresh after 5 consecutive operations to reduce the accumulation of afterimages on the screen.

1. The typical power is measured with following transition from horizontal pattern to vertical pattern.(Note4.2-1) 2. The deep sleep power is the consumed power when the panel controller is in deep sleep mode.

3. The listed electrical/optical characteristics are only guaranteed under the controller & waveform provided by Seengreat.

Note 4.2-1

The Typical power consumption

4.3 Serial Peripheral Interface Timing

The following specifications apply for: VDDIO - VSS = 2.2V to 3.7V, CL=20pF

|--|

Symbol	Parameter	Min	Тур	Max	Unit
fSCL	SCL frequency (Write Mode)	-	-	20	MHz
tCSSU	Time CS# has to be low before the first rising edge of SCLK	60	-	-	ns
tCSHLD	Time CS# has to remain low after the last falling edge of SCLK	65	-	-	ns
tCSHIGH	Time CS# has to remain high between two transfers	100	-	-	ns
tSCLHIGH	Part of the clock period where SCL has to remain high	25	-	-	ns
tSCLLOW	Part of the clock period where SCL has to remain low	25	-	-	ns
tSISU	Time SI (SDA Write Mode) has to be stable before the next rising edge of SCL	10	-	-	ns
tSIHLD	Time SI (SDA Write Mode) has to remain stable after the rising edge of SCL	40	-	-	ns

Read mode

Symbol	Parameter	Min	Тур	Max	Unit	
fSCL	SCL frequency (Read Mode)	-	-	2.5	MHz	
tCSSU	Time CS# has to be low before the first rising edge of SCLK	100	-	-	ns	
tCSHLD	tCSHLD Time CS# has to remain low after the last falling edge of SCLK		-	-	ns	
tCSHIGH	GH Time CS# has to remain high between two transfers		-	-	ns	
tSCLHIGH	SCLHIGH Part of the clock period where SCL has to remain high		-	-	ns	
tSCLLOW	Part of the clock period where SCL has to remain low	180	-	-	ns	
TSOSU	Time SO(SDA Read Mode) will be stable before the next rising edge of SCL	-	50	-	ns	

2.7inch E-Paper

tSOHLD Time SO (SDA Read Mode) will remain stable after the falling edge of SCL

0 - ns

Note: All timings are based on 20% to 80% of VDDIO-VSS

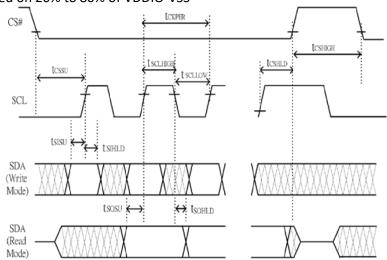


Figure 4.3-1 : Serial peripheral interface characteristics

4.4 MCU Interface

4.4-1 MCU interface selection

The 2.7inch e-Paper can support 3-wire/4-wire serial peripheral interface. In the Module, the MCU interface is pin selectable by BS1 pins shown in.

Table 4.4-1: MCU interface selection					
BS1 MPU Interface					
L	4-lines serial peripheral interface (SPI)				
Н	3-lines serial peripheral interface (SPI) - 9 bits SPI				

Note: L is connected to VSS and H is connected to VDDIO

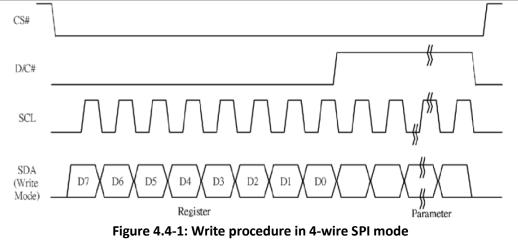
4.4-2 MCU Serial Peripheral Interface (4-wire SPI)

The 4-wire SPI consists of serial clock SCL, serial data SDA, D/C# and CS#, The control pins status in 4-wire SPI in writing command/data is shown in Table 4.4-2 and the write procedure 4-wire SPI is shown in Figue 4.4-2.

Table 4.4-2 : Control pins status of 4-wire SPI

Function	SCL pin	SDA pin	D/C# pin	CS# pin
Write command	↑	Command bit	L	L
Write data	1	Data bit	Н	L

Note:


 $(1)\ {\sf L}$ is connected to VSS and H is connected to VDDIO

(2) 1 stands for rising edge of signal

In the write mode:

SDA is shifted into an 8-bit shift register on every rising edge of SCL in the order of D7, D6, ... D0. The level of D/C# should be kept over the whole byte. The data byte in the shift register is written to the Graphic Display Data RAM (RAM)/Data Byte register or command Byte register according to D/C# pin.

In the read mode:

After CS# is pulled low, the first byte sent is command byte, D/C# is pulled low. After command byte sent, the following byte(s) read are data byte(s), so D/C# bit is then pulled high. An 8-bit data will be shifted out on every clock falling edge. The serial data SDA bit shifting sequence is D7, D6, to D0 bit. Figure 6-2 shows the read procedure in 4-wire SPI.

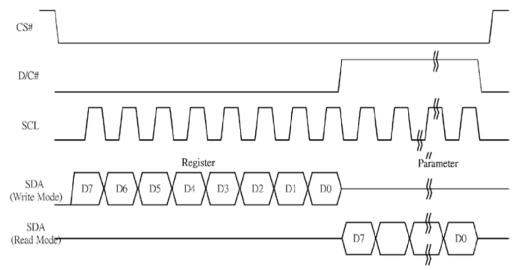


Figure 4.4-2: Read procedure in 4-wire SPI mode

4.4-3 MCU Serial Peripheral Interface (3-wire SPI)

The 3-wire SPI consists of serial clock SCL, serial data SDA and CS#. The operation is similar to 4-wire SPI while D/C# pin is not used and it must be tied to LOW. The control pins status in 3-wire SPI is shown in Table 4.4-3.

Table 4.4-3 : C	ontrol pins statu	is of 3-wire SPI	

Function SCL pin		SDA pin	D/C# pin	CS# pin	
Write	1	Command	Tie LOW	L	
Write data	↑ (Data bit	Tie LOW	L	

Note:

(1)L is connected to VSS and H is connected to VDDIO

(2)[†] stands for rising edge of signal

In the write operation:

A 9-bit data will be shifted into the shift register on every clock rising edge. The bit shifting sequence is D/C# bit, D7 bit, D6 bit to D0 bit. The first bit is D/C# bit which determines the following byte is command or data. When D/C# bit is 0, the following byte is command. When D/C# bit is 1, the following byte is data. Figure 4.4-3 shows the write procedure in 3-wire SPI.

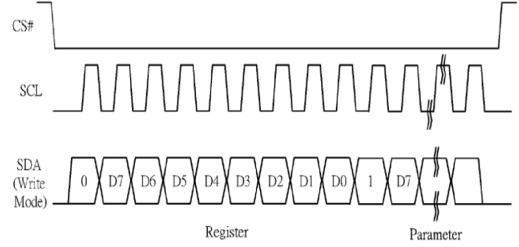


Figure 4.4-3: Write procedure in 3-wire SPI mode

In the read mode:

SDA data are transferred in the unit of 9 bits. After CS# pull low, the first byte is command, the D/C# bit is as 0 and following with the register byte. After command byte send, the following byte(s) are data byte(s), with D/C# bit is 1.After D/C# bit sending from MCU, an 8-bit data will be shifted out on every clock falling edge. The serial data SDA bit shifting sequence is D7, D6, to D0 bit. Figure 4.4-4 shows the read procedure in 3-wire SPI

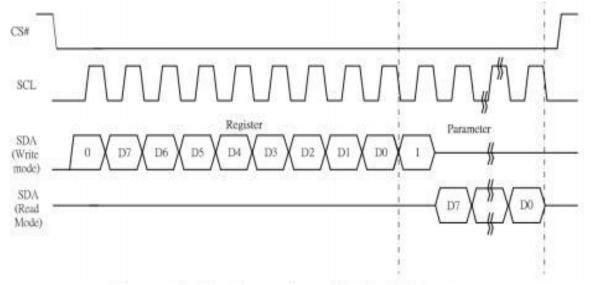
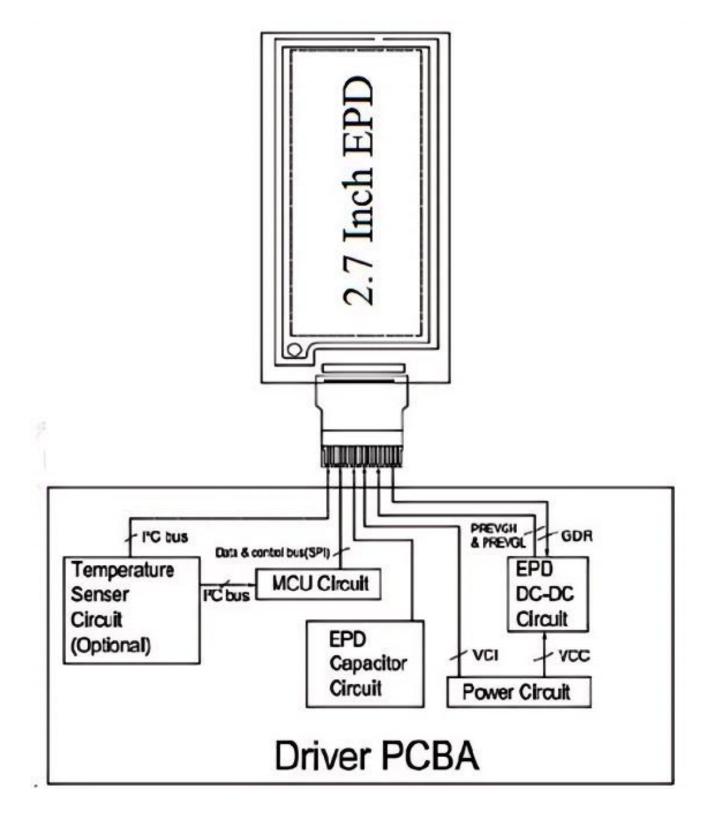
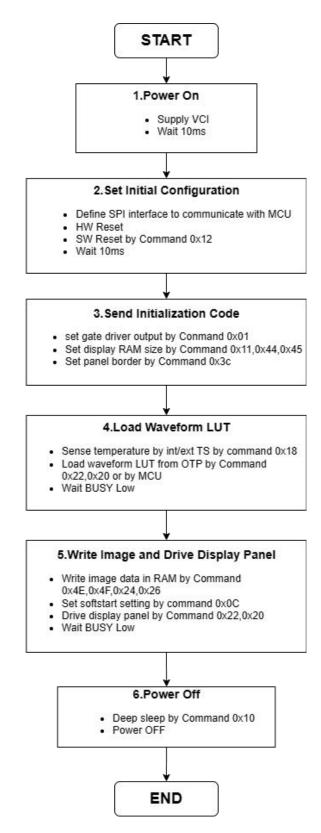



Figure 4.4-4: Read procedure in 3-wire SPI mode


4.4 Block Diagram

5. Typical Operating Sequence

5.1 General operation flow to drive display panel

6. Optical characteristics

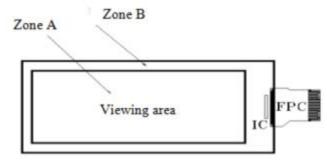
6.1 Specifications

Measurements are made with that the illumination is under an angle of 45 degrees, the detection is perpendicular unless otherwise specified.

				T=25°C			
SYMBOL	PARAMETER	CONDITIONS	MIN	ТҮРЕ	MAX	UNIT	Note
R	White	white	30	35	-	%	Note 6-1
	Reflectivity						
GN	2Grey Level	-	-	DS+(WS-DS)×n(m-1)	-		
CR	Contrast Ratio	Indoor	8:1		-	-	Note 6-2
Life	-	Topr		1000000times or 5years	-	-	

m:2

WS : White state


DS : Dark stat

Note 6-1: Luminance meter : Eye - One Pro Spectrophotometer.

Note 6-2: CR=Surface Reflectance with all white pixel/Surface Reflectance with all black pixels.

7. Point and line standard

Temperature: 25 ± 3°C; Humidity: 55 ± 10%RH; Brightness: 1200~1500LUX; distance: 20-30CM; Angle: Relate 30°surround.

7.1 Electric inspection standard

NO.	Item	Standard	Defect level	Method	Scope
1	Display	Display complete Display uniform	MA	-	
2	Black/White spots	$D \le 0.25 \text{mm}$, Allowed $0.25 \text{mm} < D \le 0.4 \text{mm} \cdot N \le 3$, and $D = 0.25 \text{mm} \cdot N \le 3$, and $D = 0.4 \text{mm} \cdot N \le 3$, and 0.4 mm < D Not Allow	MI	Visual inspection	
3	Black/White spots (No switch)	$L \rightarrow \downarrow$ L ≤ 0.6 mm, W ≤ 0.2 mm, N ≤ 1 L ≤ 2.0 mm, W > 0.2 mm, Not Allow L > 0.6 mm, Not Allow	MI	Visual/ Inspection card	Zone A
4	Ghost image	Allowed in switching process	MI	Visual inspection	
5	Flash spots/ Larger FPL size	Flash spots in switching, Allowed FPL size larger than viewing area, Allowed	MI	Visual/ Inspection card	Zone A Zone B
6	Display wrong/Missing	All appointed displays are showed correct	MA	Visual inspection	Zone A
7	Short circuit/ Circuit break/ Display abnormal	Not Allow		105507 4 . 27505255	

7.2 Appearance inspection standard

NO.	Item	Standard	Defect level	Method	Scope
1	B/W spots /Bubble/ Foreign bodies/ Dents	$\begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ D \leq 0.25 \text{mm}, \text{ Allowed} \\ 0.25 \text{mm} \leq D \leq 0.4 \text{mm}, \text{ N} \leq 3 \\ D > 0.4 \text{mm}, \text{ Not Allow} \end{array}$	MI	Visual inspection	Zone A
2	Glass crack	Not Allow MA		Visual	Zone A Zone B
3	Dirty	Allowed if can be removed	MI	/ Microscope	Zone A Zone B
4	Chips/Scratch/ Edge crown	X \leq 3mm, Y \leq 0.5mmAnd without affecting the electrode is permissible $\frac{y}{\sqrt{x}}$ 2mm \leq X or 2mm \leq Y Not Allow $\frac{1}{\sqrt{x}}$ W \leq 0.1mm, L \leq 5mm, No harm to the electrodes and N \leq 2 allow	MI	Visual / Microscope	Zone A Zone B

8. Precautions

- (1) Do not apply pressure to the EPD panel in order to prevent damaging it.
- (2) Do not connect or disconnect the interface connector while the EPD panel is in operation.
- (3) Do not touch IC bonding area. It may scratch TFT lead or damage IC function.
- (4) Please be mindful of moisture to avoid its penetration into the EPD panel, which may cause damage during operation.
- (5) If the EPD Panel / Module is not refreshed every 24 hours, a phenomena known as "Ghosting" or "Image Sticking" may occur. It is recommended to refreshed the ESL /

EPD Tag every 24 hours in use case. It is recommended that customer ships or stores the ESL / EPD Tag with a completely white image to avoid this issue

(6) High temperature, high humidity, sunlight or fluorescent light may degrade the EPD panel's performance. Please do not expose the unprotected EPD panel to high temperature, high humidity, sunlight, or fluorescent for long periods of time.